
Advanced Q-Function Learning Methods

February 22, 2017

Review: Q-Value iteration

Algorithm 1 Q-Value Iteration

Initialize Q(0)

for n = 0, 1, 2, . . . until termination condition do
Q(n+1) = T Q(n)

end for

[T Q](s, a) = Es1

[
r0 + γmax

a1

Q(s1, a1)

∣∣∣∣ s0 = s, a0 = a

]

Q-Value Iteration with Function Approximation: Batch Method

I Parameterize Q-function with a neural network Qθ

I Backup estimate T̂ Qt = rt + maxat+1 γQ(st+1, at+1)

I To approximate Q ← T̂ Q, solve minimizeθ
∑

t

∥∥∥Qθ(st , at)− T̂ Qt

∥∥∥2

Algorithm 2 Neural-Fitted Q-Iteration (NFQ)1

I Initialize θ(0).
for n = 0, 1, 2, dots do

Run policy for K timesteps using some policy π(n).

θ(n+1) = minimizeθ
∑

t

(
T̂ Qθ(n) t − Qθ(st , at)

)2

end for

1M. Riedmiller. “Neural fitted Q iteration–first experiences with a data efficient neural reinforcement learning method”. Machine Learning:
ECML 2005. Springer, 2005.

Q-Value Iteration with Function Approximation:

Online/Incremental Method

Algorithm 3 Watkins’ Q-learning / Incremental Q-Value Iteration

Initialize θ(0).
for n = 0, 1, 2, dots do

Run policy for K timesteps using some policy π(n).

g (n) = ∇θ

∑
t

(
T̂ Qt − Qθ(st , at)

)2

θ(n+1) = θ(n) − αg (n) (SGD update)
end for

Q-Value Iteration with Function Approximation: Error

Propagation

I Two sources of error: approximation (projection), and noise

I Projected Bellman update: Q → ΠT Q
I T : backup, contraction under ‖·‖∞, not ‖·‖2

I Π: contraction under ‖·‖2, not ‖·‖∞

DQN (overview)
I Mnih et al. introduced Deep Q-Network (DQN) algorithm, applied it to ATARI games

I Used deep learning / ConvNets, published in early stages of deep learning craze (one year
after AlexNet)

I Popularized ATARI (Bellemare et al., 2013) as RL benchmark

I Outperformed baseline methods, which used hand-crafted features

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, et al. “Playing Atari with Deep Reinforcement Learning”. (2013)
M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. “The Arcade Learning Environment: An Evaluation Platform for General Agents”. Journal
of Artificial Intelligence Research (2013)

DQN (network)

DQN (algorithm)
I Algorithm is hybrid of online and batch Q-value iteration, interleaves optimization with

data collection

I Key terms:

I Replay memory D: history of last N transitions
I Target network: old Q-function Q(n) that is fixed over many (∼ 10, 000)

timesteps, while Q ⇒ T Q(n)

I

DQN Algorithm: Key Concepts

I Why replay memory?
I Why it’s valid: Q-function backup Q ⇒ T Q(n) can be performed using

off-policy data
I Each transition (s, a, r , s ′) seen many times ⇒ better data efficiency, reward

propagation
I History contains data from many past policies, derived from

Q(n),Q(n−1),Q(n−2), . . . and changes slowly, increasing stability.
I Feedback: Q ⇔ D

I Why target network? Why not just use current Q as backup target?
I Resembles batch Q-value iteration, fixed target T Q(n) rather than moving

target
I Feedback: Q ⇔ Q(target)

Are Q-Values Meaningful

Yes:

From supplementary material of V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, et al. “Human-level control through deep
reinforcement learning”. Nature (2015)

Are Q-Values Meaningful

But:

From H. Van Hasselt, A. Guez, and D. Silver. “Deep reinforcement learning with double Q-learning”. CoRR, abs/1509.06461 (2015)

Double Q-learning

I EX1,X2 [max(X1,X2)] ≥ max(EX1,X2 [X1] ,E [X2])

I Q-values are noisy, thus r + γmaxa′ Q(s ′, a′) is an overestimate

I Solution: use two networks QA,QB , and compute argmax with the other
network

QA(s, a)← r + γQ(s ′, argmax
a′

QB(s
′, a′))

QB(s, a)← r + γQ(s ′, argmax
a′

QA(s
′, a′))

“←” means “updates towards”

H. V. Hasselt. “Double Q-learning”. NIPS. 2010

Double DQN

I Standard DQN:

Q(s, a)← r + γmax
a′

Q(target)(s ′, a′)

Q(s, a)← r + γQ(target)(s ′, argmax
a′

Q(target)(s ′, a′))

I Double DQN:

Q(s, a)← r + γQ(target)(s ′, argmax
a′

Q(s ′, a′))

I Might be more accurately called “Half DQN”

H. Van Hasselt, A. Guez, and D. Silver. “Deep reinforcement learning with double Q-learning”. CoRR, abs/1509.06461 (2015)

Dueling net
I Want to separately estimate value function and advantage function

Q(s, a) = V (s) + A(s, a)

I |V | has larger scale than |A| by ≈ 1/(1− γ)
I But small differences A(s, a)− A(s, a′) determine policy

I Parameterize Q function as follows: Qθ(s, a) = Vθ(s) + Fθ(s, a)−mean
a′

Fθ(s, a′)︸ ︷︷ ︸
“Advantage′′part

I Separates value and advantage parameters, whose gradients have different scale. Poor
scaling can be fixed by RMSProp / ADAM

Z. Wang, N. de Freitas, and M. Lanctot. “Dueling network architectures for deep reinforcement learning”. arXiv preprint arXiv:1511.06581
(2015)

Prioritized Replay

I Bellman error loss:
∑

i∈D

∥∥∥Qθ(si , ai)− Q̂t

∥∥∥2

/2

I Can use importance sampling to favor timesteps i with large gradient.
Allows for faster backwards propagation of reward information

I Use last Bellman error |δi |, where δi = Qθ(si , ai)− Q̂t as proxy for size of
gradient

I Proportional: pi = |δi |+ ε
I Rank: pi = 1/ ranki

I Yields substantial speedup across ATARI benchmark

T. Schaul, J. Quan, I. Antonoglou, and D. Silver. “Prioritized experience replay”. arXiv preprint arXiv:1511.05952 (2015)

Practical Tips (I)
I DQN is more reliable on some tasks than others. Test your impementation on reliable

tasks like Pong and Breakout: if it doesn’t achieve good scores, something is wrong.

Figure: From T. Schaul, J. Quan, I. Antonoglou, and D. Silver. “Prioritized experience
replay”. arXiv preprint arXiv:1511.05952 (2015), Figure 7

I Large replay buffers improve robustness of DQN, and memory efficiency is key.

I Use uint8 images, don’t duplicate data

I Be patient. DQN converges slowly—for ATARI it’s often necessary to wait for 10-40M
frames (couple of hours to a day of training on GPU) to see results significantly better
than random policy

Credit: Szymon Sidor

Practical Tips (II)

I Use Huber loss on Bellman error

L(x) =

{
x2/2 if |x | ≤ δ
δ|x | − δ2/2 otherwise

I Do use Double DQN—significant improvement from 3-line change in Tensorflow.

I To test out your data preprocessing, try your own skills at navigating the environment
based on processed frames.

I Always run at least two different seeds when experimenting

I Learning rate scheduling is beneficial. Try high learning rates in initial exploration period.

I Try non-standard exploration schedules.

Credit: Szymon Sidor

That’s all. Questions?

