Advanced Q-Function Learning Methods

February 22, 2017

Review: @-Value iteration

Algorithm 1 Q-Value Iteration

Initialize Q©

for n=20,1,2,... until termination condition do
QD) — 7"

end for

[TQ](s,a) =Eg [0+~ ma?x Q(s1,a1)

so:s,ao:a]

Q-Value lteration with Function Approximation: Batch Method

» Parameterize Q-function with a neural network Qg

> Backup estimate 7 Q; = r: + maxa,,, YQ(St+1, ar+1)
2

QG(Sta 3t) - 7/-51'

» To approximate Q < 7 Q, solve minimizey),

Algorithm 2 Neural-Fitted Q-Iteration (NFQ)*

» Initialize #(9.
for n=0,1,2, dots do
Run policy for K timesteps using some policy 7(".
— 2
o) — minimize, 3, (7 Qoo — Qolse,))

end for

M. Riedmiller. “Neural fitted Q iteration—first experiences with a data efficient neural reinforcement learning method”. Machine Learning
ECML 2005. Springer, 2005.

Q-Value lteration with Function Approximation:
Online/Incremental Method

Algorithm 3 Watkins' Q-learning / Incremental Q-Value lteration

Initialize #(®).
for n=0,1,2, dots do
Run policy for K timesteps using some policy 7(".
—_— 2
gl =V, Zt<TQt — Qu(st, at)>

o) = (") — qg(" (SGD update)
end for

Propagation

@-Value lteration with Function Approximation: Error

> Two sources of error: approximation (projection), and noise
» Projected Bellman update: Q — N7 Q

» T backup, contraction under |||/, not ||-|2
» M: contraction under ||-||2, not ||||oc

DA

DQN (overview)

> Mnih et al. introduced Deep Q-Network (DQN) algorithm, applied it to ATARI games

> Used deep learning / ConvNets, published in early stages of deep learning craze (one year

after AlexNet)

> Popularized ATARI (Bellemare et al., 2013) as RL benchmark

» Outperformed baseline methods, which used hand-crafted features

B.Rider | Breakout | Enduro | Pong | Q*bert | Seaquest | S.Invaders
Random 354 12 —20.4 157 110 179
Sarsa [3] 996 5.2 129 —19 614 665 271
Conti (4] 1743 6 159 —17 960 723 268
DQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 -3 18900 | 28010 3690
HNeat Best [8] 3616 52 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 —16 1325 800 1145
| DQN Best 5184 225 661 21 4500 1740 1075

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, |. Antonoglou, et al. “Playing Atari with Deep Reinforcement Learning”.

(2013)
M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. “The Arcade Learning Environment: An Evaluation Platform for General Agents”.
of Artificial Intelligence Research (2013)

Journal

DQN (network)

Fully cgnnected

Fully cgnnecled

L

o nr
T\

E g mnn B n

L

uuuuaun agggeee

DQN (algorithm)

> Algorithm is hybrid of online and batch Q-value iteration, interleaves optimization with
data collection
> Key terms:
» Replay memory D: history of last N transitions
» Target network: old Q-function Q(") that is fixed over many (~ 10,000)
timesteps, while Q@ = 7 Q("

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function @) with random weights
for episode = 1, M do
Initialise sequence s; = {1} and preprocessed sequenced ¢; = ¢(s1)
fort=1,7 do
'With probability e select a random action a;
otherwise select a; = max, Q*(4(s;), a;0)
Execute action a; in emulator and observe reward r; and image ;1
Set s¢+1 = St, @z, Te41 and preprocess dy+1 = P(5¢41)
Store transition (¢, az, T, Pr41) in D
Sample random minibatch of transitions (¢;, a;, 7, ¢;+1) from D

Sety; = { Tj for terminal g_b]“
J 7 +ymaxy Q(¢jt1,a;6) for non-terminal ;.
Perform a gradient descent step on (y; — Q(¢;, a;; 6))? according to equation 3
end for
end for

DQN Algorithm: Key Concepts

» Why replay memory?

» Why it's valid: Q-function backup Q = 7 Q(" can be performed using
off-policy data
Each transition (s, a, r,s’) seen many times = better data efficiency, reward
propagation

» History contains data from many past policies, derived from

Q(”), Q("*l), Q(”*z), ... and changes slowly, increasing stability.

» Feedback: Q@ & D

» Why target network? Why not just use current Q as backup target?

» Resembles batch Q-value iteration, fixed target T Q™ rather than moving
target

» Feedback: Q < Q(target)

Are Q-Values Meaningful

Yes:

250 Average Revard on resut - 1a00 . Average Rowardon Seaguest . Average @ on Breatout . Average Qo Seaest
] F1e00 Gas Ge
g2 1] G R 57
5 | g1200 3 3
a fl a8 25 >

1o M /ﬁ/"«]‘ 1000 \ s 55
H T "l 3% g 2 g3
Z100 /\ W H] 2.5 2
H l sl) 82

5 400 g g1 g
H £ 2os £
§ 2 H 2
<0 o o °

710 20 30 40 50 60 70 80 0 100 0 10 20 30 40 50 60 70 80 0 100 0 10 20 30 40 50 60 70 80 80 100 0 10 20 30 40 50 60 70 80 80 100
Training Epochs Training Epochs Training Epochs Training Epochs

6 O Soo-wn S m-wn S m—rm

a..'.

s 3
9 e i m-
shan oA [I com
N SRR §

From supplementary material of V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, et al.

“Human-level control through deep
reinforcement learning”. Nature (2015)

Are Q-Values Meaningful

But:
Alien Space Invaders Time Pilot Zaxxon

0 90 25 k

% 8 DQN estimate

g 8 2.0 ‘ ‘

'ﬁ 15 6

5] 6 15 4 .

@ ouble DQN estimate

T:: 10 Lo 2 ble DQN true vals
ouble rue value

> 4 DQN true value

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Training steps (in millions)

From H. Van Hasselt, A. Guez, and D. Silver. “Deep reinforcement learning with double Q-learning”. CoRRabs/1509.06461 (2015)=

Double Q-learning

>]EX1,X2 [maX(Xh X2)] > maX(EX1,X2 [XI] 7E [XQ])
» Q-values are noisy, thus r + vy maxy Q(s’, ") is an overestimate

» Solution: use two networks Qa, @g, and compute argmax with the other
network

Qa(s, a) < r+~vQ(s',argmax Qg(s’, d'))

a

Qs(s,a) + r+vQ(s', argmax Qa(s’, d'))

a

“" means “updates towards"

H. V. Hasselt. “Double Q-learning”. NI/PS. 2010

Double DQN

» Standard DQN:

Q(’)<_ r_|_,ymaXQtarget (s',a’)

Q(S, 3) —r+ ny (target) (S , arg max Q(target)(sl’ a/))

al

» Double DQN:

Q(s,a) « r +yQUe)(s’ arg max Q(s', a))

al

» Might be more accurately called “Half DQN"

H. Van Hasselt, A. Guez, and D. Silver. “Deep reinforcement learning with double Q-learning”. CoRR, abs/1509.06461 (2015)

Dueling net

» Want to separately estimate value function and advantage function
Q(s,a) = V(s) + A(s, a)
|V/| has larger scale than |A| by =~ 1/(1 —7)
» But small differences A(s, a) — A(s, a') determine policy

> Parameterize @ function as follows: Qy(s,a) = Viy(s) + Fy(s, a) — mean Fy(s,a’)
a/

fi\p
Conv R gf\t

R E—i‘> J“ 2
J

o

\Y%

“Advantage’’ part

> Separates value and advantage parameters, whose gradients have different scale. Poor
scaling can be fixed by RMSProp / ADAM

Z. Wang, N. de Freitas, and M. Lanctot. “Dueling network architectures for deep reinforcement learning”. = @#Xiv préprint arXiv:1511.96581

Prioritized Replay

~ 112
» Bellman error loss: > . ‘Qg(s;, a;) — Q|| /2
» Can use importance sampling to favor timesteps / with large gradient.
Allows for faster backwards propagation of reward information
» Use last Bellman error |4;|, where §; = Qy(s;, a;) — Q; as proxy for size of
gradient
» Proportional: p; = |0;] + ¢
» Rank: p; = 1/ rank;
» Yields substantial speedup across ATARI benchmark

T. Schaul, J. Quan, I. Antonoglou, and D. Silver. “Prioritized experience replay”. arXiv preprint arXiv:1511.05952(2015)

Practical Tips (1)

» DQN is more reliable on some tasks than others. Test your impementation on reliable
tasks like Pong and Breakout: if it doesn't achieve good scores, something is wrong.

Pon
30 9 400 Breakout 400000
15 320 320000
0 : : 240 : 240000
160 160000

80 80000

-30 ool | o

Video Pinball

Ventur
250 enture

200
150
100
50
0

Figure: From T. Schaul, J. Quan, |. Antonoglou, and D. Silver. “Prioritized experience
replay”. arXiv preprint arXiv:1511.05952 (2015), Figure 7

> Large replay buffers improve robustness of DQN, and memory efficiency is key.

» Use uint8 images, don't duplicate data

> Be patient. DQN converges slowly—for ATARI it's often necessary to wait for 10-40M
frames (couple of hours to a day of training on GPU) to see results significantly better

than random policy

Credit: Szymon Sidor

Practical Tips (Il)

» Use Huber loss on Bellman error

x2/2 if x| <6
L= /2 =0
d|x| — 0%/2 otherwise

» Do use Double DQN—significant improvement from 3-line change in Tensorflow.

> To test out your data preprocessing, try your own skills at navigating the environment
based on processed frames.

> Always run at least two different seeds when experimenting
» Learning rate scheduling is beneficial. Try high learning rates in initial exploration period.

» Try non-standard exploration schedules.

Credit: Szymon Sidor

That's all. Questions?

