Variance Reduction for Policy Gradient Methods
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Reward Shaping

» Reward shaping: 7(s,a,s’) = r(s,a,s’) + y®(s’) — ®(s) for arbitrary
“potential” ¢

» Theorem: 7 admits the same optimal policies as r.?

» Proof sketch: suppose Q* satisfies Bellman equation (7Q = Q). If we
transform r — 7, policy’s value function satisfies Q(s, a) = Q*(s, a) — ®(s)
» Q* satisfies Bellman equation = @ also satisfies Bellman equation

AL Y. Ng, D. Harada, and S. Russell. “Policy invariance under reward transformations: Theory and applicationto reward shaping”. /GVL. 1999.



Reward Shaping

» Theorem: R admits the same optimal policies as R. A. Y. Ng, D. Harada, and S. Russell.
“Policy invariance under reward transformations: Theory and application to reward
shaping”. [CML. 1999

> Alternative proof: advantage function is invariant. Let's look at effect on V™ and Q™:
E[ro+~n + v+ .. ] condition on either sy or (sp, ag)
=E[h+7A+7R+...]
=E [(ro+7®(s1) = ®(s0)) + 7(r1 +7(2) = D(s1)) +7°(r2 + 7P (s3) — ¥(s2)) + ... ]
=E[rn+yn+7n+ - — ()]
Thus,
V™(s) = V™(s) — &(s)
Q7(s) = Q7(s,a) — &(s)
A™(s) = A™(s, a)

A™(s,7(s)) = 0 at all states = = is optimal



Reward Shaping and Problem Difficulty

> Shape with ® = V* = problem is solved in one step of value iteration

> Shaping leaves policy gradient invariant (and just adds baseline to estimator)

E[Vologmg(ao | 50)(r0 +7P(s1) — ®(50)) +7(r +7P(s2) — d(s1))
+7%(n +79(s3) — (s2)) + ... ]

=K [Ve log 79 (a0 | S0)(ro + vy + Vr4 = cl3(50))}

=E [Vglogmg(ao | 50)(ro +vri +7°r2+...)]



Reward Shaping and Policy Gradients
» First note connection between shaped reward and advantage function:
Es [0 +7V™(51) — V™ (s0) | s5o = 5,80 = a] = A" (s, a)

Now considering the policy gradient and ignoring all but first shaped reward (i.e., pretend
~ = 0 after shaping) we get

E lz Vo log m(a: | St)Ft] =E lz Vologmg(ar | se)(re + V7 (Se41) — VW(St))]

=E Z Vlogmo(at | se)A™ (st, at)]
t

» Compromise: use more aggressive discount v\, with A € (0,1): called generalized
advantage estimation

o0
Z Vo logmg(ar | st Z rH_k]

k=0



Reward Shaping — Summary

» Reward shaping transformation leaves policy gradient and optimal policy
invariant
» Shaping with ® ~ V™ makes consequences of actions more immediate

» Shaping, and then ignoring all but first term, gives policy gradient



[Aside] Reward Shaping: Very Important in Practice

> |. Mordatch, E. Todorov, and Z. Popovi¢. “Discovery of complex behaviors through
contact-invariant optimization". ACM Transactions on Graphics (TOG) 31.4 (2012),
p. 43

L (s) = Lt (8) + Lenysics (8) 4+ Lask (8) + Liins (s)

bl

» Y. Tassa, T. Erez, and E. Todorov. “Synthesis and stabilization of complex behaviors
through online trajectory optimization”. Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on. |EEE. 2012, pp. 4906-4913

The state-cost is composed of 4 terms. The first term
penalizes the horizontal distance (in the zy-plane) between
the center-of-mass (CoM) and the mean of the feet positions.
The second term penalizes the horizontal distance between
the torso and the CoM. The third penalizes the vertical
distance between the torso and a point 1.3m over the mean of
the feet. All three terms use the smooth-abs norm (Figure 2).
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Variance Reduction

» We have the following policy gradient formula:

T-1
VoE, [R] = E, Z Vlogm(a; | st,0)A"(st, a:)

t=0

» A" is not known, but we can plug in A, an advantage estimator
» Previously, we showed that taking

At: fe + rey1 + reeo + -+ — b(st)

for any function b(s;), gives an unbiased policy gradient estimator.
b(s:) = V7(s;) gives variance reduction.



The Delayed Reward Problem

» With policy gradient methods, we are confounding the effect of multiple
actions:

Ac=ri+re1+ ro+ o — b(s:)

mixes effect of a;, a;11, arr2, - -

> SNR of A, scales roughly as 1/ T

» Only a; contributes to signal A™(s;, a;), but az11, ary2, ... contribute to
noise.



Variance Reduction with Discounts

>

Discount factor 7, 0 < v < 1, downweights the effect of rewards that are far
in the future—ignore long term dependencies

We can form an advantage estimator using the discounted return:

AA;/ = It + Y41 +’y2r1_-+2 +. /—b(st)

discounted return

reduces to our previous estimator when v = 1.

So advantage has expectation zero, we should fit baseline to be discounted
value function

V™i(s) =E, [rg +yn VR4 s = s]

Discount = is similar to using a horizon of 1/(1 — 7) timesteps
A? is a biased estimator of the advantage function



Value Functions in the Future

» Baseline accounts for and removes the effect of past actions

» Can also use the value function to estimate future rewards

re +vV(st+1) cut off at one timestep

re+ Yreg1 + 72 V(st42) cut off at two timesteps

re+ Yrep1 4+ Y2 rgo + .. oo timesteps (no V)



Value

>

>

>

Functions in the Future

Subtracting out baselines, we get advantage estimators

AD = 1+ AV (se41)— V(se)
AP ot s V() V()

/Z‘\goo) = It +’yrt+1 +’y2rt+2 +... —V(St)

/A\gl) has low variance but high bias, Aﬁ"o) has high variance but low bias.

Using intermediate k (say, 20) gives an intermediate amount of bias and variance



Finite-Horizon Methods: Advantage Actor-Critic

» A2C / A3C uses this fixed-horizon advantage estimator

» Pseudocode

for iteration=1,2,... do
Agent acts for T timesteps (e.g., T = 20),
For each timestep t, compute

I'A?t =re+yrer+ o Jr")/7—7t+1rT—1 + 'YTitV(St)
AAt == ét - V(St)

f)’f is target value function, in regression problem
A; is estimated advantage function
Compute loss gradient g = Vg ZtT:l {— log g (ay | s¢)A: 4+ c(V(s) — /%t)Q}
g is plugged into a stochastic gradient descent variant, e.g., Adam.
end for

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, et al. “Asynchronous methods for deep reinforcement learning” . (2016)



A3C Video



A3C Results
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Reward Shaping



TD(A) Methods: Generalized Advantage Estimation

> Recall, finite-horizon advantage estimators
AS” =rdyra+ oY 1+ YV (seak) — V(st)

> Define the TD error 6; = ry + vV (st41) — V(st)
» By a telescoping sum,

Agk) =0 + Y041 + -+ Y ekt
> Take exponentially weighted average of finite-horizon estimators:

A = AW 1 2AB) 1 N2AB) 4

> We obtain

A} =5 + (YA )0es1 + (PN)20ri2 + - ..

> This scheme named generalized advantage estimation (GAE) in [1], though versions have
appeared earlier, e.g., [2]. Related to TD(})

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. “High-dimensional continuous control using generalized advantage estimation”.
(2015)

H. Kimura and S. Kobayashi. “An Analysis of Actor/Critic Algorithms Using Eligibility Traces: Reinforcement Learning with Imperfect Value



Choosing parameters 7y, A

Performance as v, A\ are varied

Cart-pole performance after 20 iterations
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