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Supervised learning v.s. reinforcement learning

§ What is the biggest difference?

‚ The problem domains are different, but they
both learn to map input/states to output/actions

‚ To me, the key difference is the objective function



Supervised learning v.s. reinforcement learning

§ Supervised learning (this talk)

- Structured output prediction
- Optimizing conditional log-likelihood

§ Reinforcement Learning (this talk)

- Discrete actions, deterministic transition, finite horizon
- Optimizing expected reward (+entropy)

§ The “entropy of the policy” is key to connect the dots.



Image captioning:
supervised learning v.s. reinforcement learning

Learn a mapping from an image x to a sequence of words a

x a ” ra1, . . . , aT s

Ñ
A dog lying next

to a cute cat on

a white bed.

§ Supervised learning: lots of input-ouput pairs are available.

§ Reinforcement learning: a bunch of raters provide rpa | xq.

§ Real world is a hybrid of the two paradigms!



Roadmap

§ Learn a mapping (xÑ a)
from inputs (x ” rx1, . . . , xT s)
to output/actions (a ” ra1, . . . , aT s)
to maximize a reward rpa | xq.

§ Model/policy πθpa | xq “
ś

i πθpai | xăi , aăi q

§ For brevity, let’s drop the conditioning on x .



Roadmap

§ Learn a mapping (xÑ a)
from inputs (x ” rx1, . . . , xT s)
to output/actions (a ” ra1, . . . , aT s)
to maximize a reward rpaq.

§ Model/policy πθpaq “
ś

i πθpai | aăi q

§ Optimal policy π˚paq is given by π˚paq “ 1ra “ argmaxarpaqs

§ We introduce a soft optimal policy π˚τ paq:

π˚τ paq “
1

Z
expprpaq { τq

- I am going to color π˚τ blue in the rest of the talk

- Our goal is to find the blue guy so πθ « π˚τ , but how?

- DKL

`

π˚τ
›

› πθ
˘

« conditional log-likelihood at τ “ 0

- DKL

`

πθ
›

› π˚τ
˘

« expected reward at τ “ 0



Roadmap

§ We introduce π˚τ paq: soft optimal policy

π˚τ paq “
1

Z
expprpaq { τq

- DKL

`

π˚τ
›

› πθ
˘

« conditional log-likelihood at τ “ 0

- DKL

`

πθ
›

› π˚τ
˘

« expected reward at τ “ 0

§ Study the non-zero temperature

- MENT [Peng & Willimas]: expected reward + τ ˆ entropy

- (1) RAML: conditional log-likelihood with τ ą 0

§ (2) UREX: combining the two directions of KL to benefit from
mode seeking DKL

`

πθ
›

› π˚τ
˘

& mode covering DKL

`

π˚τ
›

› πθ
˘

§ (3) Softmax Bellman operator: entropy-regularized expected
reward with partial rewards (bridge value & policy based RL)



(0) Background



Entropy

Measures uncertainty/information content of a distribution ppaq

H ppq “ ´
ÿ

aPA
ppaq log ppaq

“ Ea„pr´ log ppaqs

§ Concave on the simplex

§ Maximum of log|A| at uniform.

§ Minimum of 0 at one-hot.

0 0.5 1
0

0.5

1

ppa “ 1q

H
pp
q



KL divergence or relative entropy

§ KL divergence between distributions ppaq and qpaq,

DKL

`

p
›

› q
˘

“
ÿ

aPA
ppaqrlog ppaq ´ log qpaqs

“ Ea„prlog ppaq ´ log qpaqs

§ DKL is nonnegative, asymmetric, zero iff p “ q

´DKL

`

p
›

› q
˘

“ H ppq ` Ea„prlog qpaqs

§ ´DKL

`

p
›

› q1{Z
˘

“ H ppq ` Ea„prlog q1paqs ´ log Z



KL divergence – mode seeking v.s. mode covering

´DKL

`

p
›

› q
˘

“ H ppq ` Ea„prlog qpaqs

[Image courtesy of Bishop’s book.]

(a) DKL

`

p
›

› q
˘

(c) DKL

`

p
›

› q
˘

(b) DKL

`

p
›

› q
˘

mode seeking mode covering mode covering



(1) RAML: Reward Augmented
Maximum Likelihood

Learning from good mistakes.



Structured output prediction

§ Image segmentation

Ñ



Structured output prediction

§ Machine translation

As diets change, people

get bigger but plane

seating has not radically

changed.

Ñ

Avec les changements

dans les habitudes al-

imentaires, les gens

grossissent, mais les

sièges dans les avions

n’ont pas radicalement

changé.



Structured output prediction

§ Image captioning

Ñ
A dog lying next

to a cute cat on

a white bed.



Structured output prediction

Example tasks:

§ Image (semantic) segmentation

§ Machine translation

§ Image captioning

Characteristics:

- Usually lots of input-output pairs.

- Outputs comprise multi-variate correlated (discrete) variables.

- Given a complete output, a reward signal is computed:

§ Intersection over Union
§ BLEU and ROUG scores
§ Human evaluation



Structured prediction: dominant appraoch nowadays

§ Output = sequence of decisions, a ” ra1, . . . , aT s

§ Define πθpa | xq “
ś

i πθpai | x, aăi q

§ Ignore rewards and maximize
ř

px,a˚qPD log πθpa
˚ | xq

a˚3a
˚
2

a ˚
1



Structured prediction: dominant appraoch nowadays

§ At inference, beam search finds papxq « argmax
a

πθpa | xq

§ Prediction quality is measured by
ř

px,a˚q rppapxq, a˚q

x1 . . . xm res rss a˚
1

. . . a˚
T

π
θ
pa

1
|
xq

π
θ
pa

2
|
x,

a˚ 1
q

..
.

π
θ
pr

e
s
|
x,
a

˚
q



Conditional log-likelihood for a single example

§ Drop the conditioning of a on x for brevity.

OCLLpθq “ log πθpa
˚q

“ ´DKL

`

1ra “ a˚s
›

› πθpaq
˘

§ There is no notion of reward (e.g. BLEU score, edit distance).

§ All of the negative outputs a ‰ a˚ are equally penalized.

Optimal π˚paq: a “ a˚



Expected reward for a single example

Expected reward (+entropy)

OMENTpθ, τq “ Ea„πθ rrpaq{τ s ` H pπθq

§ To optimize OMENT, one uses REINFORCE to compute
∇θOMENT by sampling from πθpaq, e.g. [Ranzato et al.] .

§ The gradients are high variance. The training is slow.

§ This approach ignores supervision (after initialization).

§ One needs to bootstrap training from an CLL-trained model.



Key observation

Recall the soft optimal policy

π˚τ paq “
1

Z
exp trpaq { τu

One can re-express OMENT as:

OMENTpθ, τq “ Ea„πθ rrpaq{τ s ` H pπθq
“ Ea„πθ rrpaq{τ ´ log Z s` log Z ` H pπθq
“ Ea„πθ rlog π˚τ paqs `H pπθq ` log Z

“ ´DKL

`

πθ
›

› π˚τ
˘

` log Z

The soft optimal policy π˚τ is a global maximum OMENT.



RAML

How about optimizing for π˚τ more directly by DKL

`

π˚τ
›

› πθ
˘

?

ORAMLpθ, τq “ Ea„π˚τ log πθpa | xq

“ ´ DKL

`

π˚τ paq
›

› πθpaq
˘

´H pπ˚τ q

§ Similar to CLL, in the direction of KL.

§ Similar to MENT, in the optimal policy.

§ A notion of reward is captured in π˚τ paq 9 exptrpa, a˚q { τu.

§ The temperature τ controls the concentration of π˚τ .
As τ Ñ 0, then π˚τ paq Ñ 1ra “ a˚s and H pπ˚τ q Ñ 0 .

§ ORAML is convex in θ for log-linear models.



RAML optimization

Training with RAML is efficient and easy to implement.

§ Given a training pair pxpiq, a˚piqq, first sample
ra „ π˚τ pa | a

˚piqq, then optimize log πθpra | x
piqq.

∇θORAMLpθ, τq “
ÿ

px,a˚q

E
ra„π˚τ pa|a˚piqq

“

∇θ log πθpra | xq
‰

.

§ We just sample one augmentation ra per input x per iteration.

§ A form of data augmentation based on target rewards.

§ No bootstrapping needed. Much harder to over-fit than CLL.

§ By contrast, REINFORCE pτ “ 0q samples from πθ:

∇θOERpθ q “
ÿ

px,a˚q

E a„πθpa|xq

“

∇θ log πθpa | xq ¨ rpa, a
˚q
‰



Sampling from soft optimal policy

Stratified sampling: first select a particular reward value, then
sample a target with that reward.

§ If reward = – Hamming distance, rpa, a˚q “ ´DHpa, a
˚q, one

can draw exact samples from π˚τ pa | a
˚q.

if A ” t1, . . . , vum, then rpa, a˚q P t0, . . . ,´mu

It is easy to count ta P A | rpa, a˚q “ ku:
`

m
k

˘

pv ´ 1qk .
Summing over k , one can compute the normalization factor.

§ For edit distance, an approximate sampler is proposed.

Generally, one can resort to MCMC and importance sampling.
Samples from π˚τ pa | a

˚q can be pre-computed and stored.



TIMIT Speech Recognition

Phone error rates (PER) for different methods on TIMIT dev &
test sets. Average (min, max) PER for 4 training runs are reported.

Method Dev set Test set

CLL baseline 20.87 (´0.2, `0.3) 22.18 (´0.4, `0.2)

RAML, τ “ 0.60 19.92 (´0.6, `0.3) 21.65 (´0.5, `0.4)
RAML, τ “ 0.65 19.64 (´0.2, `0.5) 21.28 (´0.6, `0.4)
RAML, τ “ 0.70 18.97 (´0.1, `0.1) 21.28 (´0.5, `0.4)
RAML, τ “ 0.75 18.44 (´0.4, `0.4) 20.15 (´0.4, `0.4)
RAML, τ “ 0.80 18.27 (´0.2, `0.1) 19.97 (´0.1, `0.2)
RAML, τ “ 0.85 18.10 (´0.4, `0.3) 19.97 (´0.3, `0.2)
RAML, τ “ 0.90 18.00 (´0.4, `0.3) 19.89 (´0.4, `0.7)
RAML, τ “ 0.95 18.46 (´0.1, `0.1) 20.12 (´0.2, `0.1)
RAML, τ “ 1.00 18.78 (´0.6, `0.8) 20.41 (´0.2, `0.5)



Fraction of number of edits for a sequence of length 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

τ “ 0.6

τ “ 0.7

τ “ 0.8

τ “ 0.9

0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

At τ “ 0.9, augmentations with 5 to 9 edits are sampled with a
probability ą 0.1.



Machine Translation (WMT WMT’14 EnÑFr)

Tokenized BLEU score

Method Average BLEU Best BLEU

ML baseline 36.50 36.87

RAML, τ “ 0.75 36.62 36.91
RAML, τ “ 0.80 36.80 37.11
RAML, τ “ 0.85 36.91 37.23
RAML, τ “ 0.90 36.69 37.07
RAML, τ “ 0.95 36.57 36.94

RAML at different τ considerably outperforms CLL.



Related work

˛ [Szegedy et al., CVPR’16] Rethinking the Inception
Label smoothing is a special case of our method

˛ [Volkovs, Larochelle, Zemel, ArXiv’11] Loss-sensitive Training
of Probabilistic Conditional Random Fields, applies the same
ideas to CRF for ranking. No connection to RL.

Alternative methods requiring sampling or inference at training:

˛ [S. Bengio et al., NIPS’15] Schedule sampling

˛ [Ranzato et al., ICLR’16] Sequence level training

˛ [Wiseman & Rush, EMNLP’16] Beam search optimization



How about RL

Is RAML applicable to RL with unknown reward landscapes?



(2) UREX: Unde-appreciated
Reward EXploration

Calibrate rewards/τ with log-plicies



Motivation

§ Common forms of exploration in RL are undirected.

§ We need more effective exploration in
high-dimensional action spaces with sparse delayed reward.



Key idea

§ Recall soft optimal policy π˚τ paq9 expprpaq { τq

§ Augment the expected reward objective with DKL

`

π˚τ
›

› πθ
˘

to
encourage mode covering behavior

OUREXpθ, τq “ Ea„πθ rrpaq{τ s ` Ea„π˚τ rlog πθpaqs

§ To sample a „ π˚τ , first draw a „ πθ, then reweight by π˚τ {πθ.
(importance sampling)

§ let’s start by reviewing the baselines



REINFORCE [Williams’87]

Standard policy-based approach to maximize expected reward:

OERpθq “ Ea„πθ rrpaqs

∇OERpθq “ Ea„πθ rrpaq∇ log πθpaqs

§ Draw K i.i.d. action sequence samples:
apkq „ πθpaq for each 1 ď k ď K

§ Estimate the gradient via

∇OER “
1

K

K
ÿ

k“1

prpapkqq ´ bq∇ log πθpa
pkqq

§ Use a baseline b to reduce variance, e.g. sample mean reward.

§ This fails even on simple problems due to lack of exploration.



MENT [Peng & Williams’91]

Augment the objective with entropy regularization

OMENTpθ, τq “ Ea„πθ rrpaq{τ s ` H pπθq
∇OMENTpθ, τq “ Ea„πθ rprpaq{τ ´ log πθpaq ´ 1q∇ log πθpaqs

§ Estimate the gradient using K on-policy samples

∇OMENT “
1

K

K
ÿ

k“1

prpapkqq{τ´ log πθpa
pkqq

looooooomooooooon

entropy bonus

´ bq∇ log πθpa
pkqq

§ MENT does better that REINFORCE, but still fails on
problems with a large action space.

§ We need something better!



UREX [Nachum et al., ICLR’16]

Augment the objective with mode covering KL

OUREXpθ, τq “ Ea„πθ rrpaq{τ s ` Ea„π˚τ rlog πθpaqs

§ Draw K i.i.d. on-policy samples tapkquKk“1 from πθpaq .

§ Compute self-normalized importance weights

w pkq “ exp
 

rpapkqq{τ ´ log πθpa
pkqq

(

, rw pkq “
w pkq

řK
i“1 w piq

.

§ Estimate the gradient as

∇OUREX “

K
ÿ

k“1

“ 1

K
prpapkqq{τ ´ bq ` rw pkq

loomoon

UREX bonus

‰

∇ log πθpa
pkqq

§ The most under-appreciated action sequence has largest rw pkq.



Characteristics of UREX

§ UREX encourages exploration in areas where rewards are
under estimated by the current log-policy, i.e. w pkq measures
the difference between rpapkqq{τ and log πθpa

pkqq .

w pkq “ exp
 

rpapkqq{τ ´ log πθpa
pkqq

(

, rw pkq “
w pkq

řK
i“1 w piq

§ The most under-appreciated action sequences among K
samples has the largest UREX bonus rw pkq .

§ One needs multiple samples to normalize importance weights.

§ Simple and easy to implement.



RNN policy

LSTM LSTM...

s1 st

LSTM

s2

a1 a2 at

LSTM

s3

a3

Environmenth
(random seed)

at-1

a “ ra1, a2, . . . , ats πθpa | s, hq “
źt

i“1
πθpai | aăi , săi , hq
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RepeatCopy Reverse
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ReversedAddition BinarySearch
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Hyper-parameters

§ Learning rate η P t0.1, 0.01, 0.001u

§ Gradient clipping L2 norm c P t1, 10, 40, 100u

§ Temp. τ P t0, 0.005, 0.01, 0.1u, always τ “ 0.1 for UREX

REINFORCE / MENT UREX
τ “ 0.0 τ “ 0.005 τ “ 0.01 τ “ 0.1 τ “ 0.1

Copy 85.0 88.3 90.0 3.3 75.0
DuplicatedInput 68.3 73.3 73.3 0.0 100.0
RepeatCopy 0.0 0.0 11.6 0.0 18.3
Reverse 0.0 0.0 3.3 10.0 16.6
ReversedAddition 0.0 0.0 1.6 0.0 30.0
BinarySearch 0.0 0.0 1.6 0.0 20.0



Results

§ The RL agents only observe total reward at the end of episode.

§ UREX reliably solves reversion and multi-digit addition.

§ UREX ě MENT ě REINFORCE.

Expected reward
REINFORCE MENT UREX

Copy 31.2 31.2 31.2
DuplicatedInput 15.4 15.4 15.4
RepeatCopy 48.7 69.2 81.1
Reverse 3.0 21.9 27.2
ReversedAddition 1.4 8.7 30.2
BinarySearch 6.4 8.6 9.1



Results

§ The RL agents only observe total reward at the end of episode.

§ UREX reliably solves reversion and multi-digit addition.

§ UREX ě MENT ě REINFORCE.

Num. of successful attempts out of 5
REINFORCE MENT UREX

Copy 5 5 5
DuplicatedInput 5 5 5
RepeatCopy 0 3 4
Reverse 0 2 4
ReversedAddition 0 1 5
BinarySearch 0 1 4



ReversedAddition execuation trace
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Variance of importance weights v.s. expected reward
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(3) Bridging the gap between
value and policy based RL

(quick overview)

Entropy is the bridge again!



Induction

§ Suppose we are at state s0
facing n possible actions ta1, . . . , anu
with immediate rewards of tr1, . . . , rnu
successor states of ts1, . . . , snu
with sate values tv1, . . . , vnu.

§ Induce the current state value v0



Expected reward

OERpπq “
n
ÿ

i“1

πpai qpri ` γv˝i q

§ Suppose we are at state s0
facing n possible actions ta1, . . . , anu
with immediate rewards of tr1, . . . , rnu
successor states of ts1, . . . , snu
with OER-optimal sate values tv˝1 , . . . ,v

˝
n u.

§ π˝paq “ 1ra “ ai˚s where i˚ “ argmaxi pri ` γv˝i q

§ Induce the current state value v0

v˝0 “ OERpπ
˝q “ max

i
pri ` γv˝i q.



Entropy regularized expected reward

OMENTpπ, τq “
n
ÿ

i“1

πpai qpri ` γv˚i ´ τ log πpai qq,

§ Suppose we are at state s0
facing n possible actions ta1, . . . , anu
with immediate rewards of tr1, . . . , rnu
successor states of ts1, . . . , snu
with OMENT-optimal sate values tv˚1 , . . . ,v

˚
n u.

§ π˚pai q 9 exptpri ` γv˚i q{τu

§ Induce the current state value v0

v˚0 “ OMENTpπ
˚, τq “ τ log

n
ÿ

i“1

exptpri ` γv˚i q{τu



Softmax Bellman operator

v˚0 “ OMENTpπ
˚, τq “ τ log

n
ÿ

i“1

exptpri ` γv˚i q{τu

π˚pai q “
exptpri ` γv˚i q{τu

exptv˚0 {τu

Softmax temporal consistency applicable to on-policy and
off-policy samples

v˚0 “ ri ` γv˚i ´ τ log π˚pai q

We propse path-consistency learning (PCL) to minimize

ÿ

0,i

pv0 ´ ri ` γvi ´ τ log πpai qq
2
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Summary

§ We introduce π˚τ paq: soft optimal policy

π˚τ paq “
1

Z
expprpaq { τq

- DKL

`

π˚τ
›

› πθ
˘

« conditional log-likelihood at τ “ 0

- DKL

`

πθ
›

› π˚τ
˘

« expected reward at τ “ 0

§ Study the non-zero temperature

- MENT [Peng & Willimas]: expected reward + τ ˆ entropy

- (1) RAML: conditional log-likelihood with τ ą 0

§ (2) UREX: combining the two directions of KL to benefit from
mode seeking DKL

`

πθ
›

› π˚τ
˘

& mode covering DKL

`

π˚τ
›

› πθ
˘

§ (3) Softmax Bellman operator: entropy-regularized expected
reward with partial rewards (bridge value & policy based RL)



Future directions

§ Continuous control.

§ UREX for decomposable rewards.

§ Incorporating trust region methods.

§ Study the connection with simulated annealing.

§ Exploit off-policy samples & expert trajectories more.



More question?

(4) Thank you!
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