Supervised Learning of
Behaviors: Deep Learning,
Dynamical Systems, and
Behavior Cloning

CS 294-112: Deep Reinforcement Learning
Week 2, Lecture 1

Sergey Levine



Today’s Lecture

1. Definition of sequential decision problems

2. Imitation learning: supervised learning for decision making
a. Does direct imitation work?
b. How can we make it work more often?

3. Case studies of recent work in (deep) imitation learning
4. What is missing from imitation learning?

* Goals:
* Understand definitions & notation
* Understand basic imitation learning algorithms
* Understand their strengths & weaknesses



Terminology & notation
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X; — State
0; — observation m(ug|oy) — policy
u; — action

0; — observation
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Markov property
independent of x;_1




Terminology & notation

X; — State
0; — observation m(ug|oy) — policy
u; — action

/a bit of history...

X; — state S; — state
u; — action : LA 5, — action
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Imitation Learning

supervised
data learning

training mo(ut|oy)

Images: Bojarski et al. ‘16, NVIDIA



Does it work? No

- = training trajectory
; _ T expected trajectory




Does it work?

Video: Bojarski et al. ‘16, NVIDIA



Why did that work?
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Can we make it work more often?

©7 == training trajectory
.+ = T expected trajectory

stability



Learning from a stabilizing controller

p(x), uGaussian -distxibimioh obtained using variant of iterative LQR
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Can we make it work more often?

~ — training trajectory
— T expected trajectory
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can we make Paata(0t) = Pr,(0¢)7



Can we make it work more often?

can we make Pgata(0t) = pr, (0¢)7

idea: instead of being clever about p;,(0¢), be clever about pgata(0¢)!

DAgger: Dataset Aggregation

goal: collect training data from p,,(0;) instead of pgata(0¢)
how? just run mg(us|o;)

but need labels u;!

1. train mp(us|oy) from human data D = {o1,uy,...,0n,un}
2. run mp(w|os) to get dataset D, = {01,...,0n}

3. Ask human to label D,. with actions uy

4. Aggregate: D < DU D,

Ross et al. ‘11



DAgger Example
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What’s the problem?

1. train mg(u¢|os) from human data D = {01, uy,
2. run mp(w|os) to get dataset D, = {01,...,0n}
[3. Ask human to label D, with actions uy ]

4. Aggregate: D < DU D,

Ross et al. ‘11
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Imitation learning: recap

training supervised

| . 7T9(ut|0t)
Jaite earning

e Often (but not always) insufficient by itself
* Distribution mismatch problem N
* Sometimes works well P <«
* Hacks (e.g. left/right images)
* Samples from a stable trajectory distribution
* Add more on-policy data, e.g. using DAgger




Case study 1: trail following as classification

A Machine Learning Approach to Visual Perception
of Forest Trails for Mobile Robots

Alessandro Giusti', Jérome Guzzi', Dan C. Ciresan', Fang-Lin He!, Juan P. Rodriguez'
Flavio Fontana?, Matthias Faessler?, Christian Forster?
Jiirgen Schmidhuber!, Gianni Di Caro!, Davide Scaramuzza2, Luca M. Gambardella’

Deep Network Outputs
Neural
Network

% ; Turn Go Turn

Left Straight Right







Case study 2: DAgger & domain adaptation

Learning Transferable Policies for Monocular
Reactive M AV Control

Shreyansh Daftry, J. Andrew Bagnell, and Martial Hebert

Robotics Institute, Carnegie Mellon University, Pittsburgh, USA
{daftry,dbagnell, hebert}@ri.cmu.edu
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1. train mp(us|o¢) from human data D = {oq,uy,...,

2. run mg(u|os) to get dataset D, = {o01,...,0p}
3. Ask human to label D, with actions u;
4. Aggregate: D < DUD,

N
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Fig. 2. Experiments and Results for (Row-1) Transfer across physical systems from
ARDrone to ArduCopter, (Row-2) Transfer across weather conditions from summer to
winter and (Row-3) Transfer across environments from Univ. of Zurich to CMU.




Case study 3: Imitation with LSTMs

Learning real manipulation tasks from virtual demonstrations using LSTM

Rouhollah Rahmatizadeh', Pooya Abolghasemi’, Aman Behal® and Ladislau Boloni®

Gripper state Gripper state
_|—  atnext atnext _——
time-step time-step
I Multilayer
LSTM NN
Current state of 1
the environment Current state of
and grippef the environment
and gripper Robot performs the task in
Demonstration of the task  Training an LSTM network real-world based on the trajectory
by user in the simulation on demonstrations generated by the network
Virtual world: training the network Physical world: inference from the network




Learning Manipulation Trajectories
Using Recurrent Neural Networks
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Other topics in imitation learning

 Structured prediction

x: where are you “where” “are”  “you”

y: I’'m at work > < g

= See Mohammad Norouzi’s lecture in April!
* Interaction & active learning

* Inverse reinforcement learning
" Instead of copying the demonstration, figure out the goal
= Will be covered later in this course



Imitation learning: what’s the problem?

* Humans need to provide data, which is typically finite
* Deep learning works best when data is plentiful

* Humans are not good at providing some kinds of actions

P(TL) P(GS) P(TR)

* Humans can learn autonomously; can our machines do the same?
* Unlimited data from own experience
e Continuous self-improvement



Next time: learning without humans




Terminology & notation

X; — State
0; — observation c(x¢,ut) — cost function
u; — action r(x¢,u;) — reward function

ui,...,ur

T
min g pleatan by. tiger i f (x¢, wg—1)
t=1



Cost/reward functions in theory and practice

1 if walker is running
0 otherwise

1 if object at target
0 otherwise

o) = o) = {

T(Xa 11) = — w1 pgripper(x) - pobject (X) ||2‘|' ’I"(X, u) :wlv(x)+
— wal|pobject (X) — Prarget (X)]|°+ w20 ([Grorso(x)] <€)+
— w3 qu w35(htorso(x) Z h)




A cost function for imitation?

training superv.ised 7o (u¢|oy)
e learning
c(x,u) = —logp(u = 7*(x)[x)
. train mg(us|o;) from human data D = {01, uq,...,0n,un}

1
2. run mp(w|os) to get dataset D, = {01,...,0n}
3. Ask human to label D,. with actions uy

4. Aggregate: D < DU D,

Ross et al. ‘11



The trouble with cost & reward functions

reward

Sim-to-Real Robo@;ﬁ; from Pixels)with
Progressive Nets

Andrei A. Rusu, Matej Vecerik, Thomas Rothirl, Nicolas Heess,
Razvan Pascanu, Raia Hadsell

Google DeepMind
London, UK

{andreirusu, matejvecerik, tcr, heess, razp, raial@google.com

Mnih etal.’15
reinforcement learning agent what is the reward?

\

M ore on t h IS I d te I... Rewards are given automatically byCtracking the colored targe




A note about terminology...

the “R” word

a bit of history...

T
reinforcement learning min E Ele(xt,uy)] Xpa1 ~ p(Xpa1|Xe, uy)
(the problem statement) t=1

reinforcement learning

without using the model X171 ~ p(X¢41|Xe, Ut
(the method) i ( i | ’ )
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