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This file is a supplement to the ICRA paper “GP-
GPIS-OPT: Grasp Planning With Shape Uncertainty Using
Gaussian Process Implicit Surfaces and Sequential Con-
vex Programming.” We refer the reader to the original
paper for notation and the problem description [8]. Our
dataset, references to our code, and videos of our experi-
ments can be found at http://rll.berkeley.edu/
icra2015grasping/.

I. GPIS SURFACE NORMALS

In this section we describe how to predict surface normals
using a GPIS. Formally, the surface normal of a GPIS f ∼
N (µ,Σ) at a spatial location x is n(x) = 5f(x)

‖5f(x)‖2 . The
derivative of a Gaussian process is another Gaussian process,
and therefore the gradient5f(x) can also be predicted using
Gaussian process regression [10], [3]:

5f(x) = 5
(
m(x) + k(X ,x)ᵀ(K + σ2

mI)−1(y −m(X ))
)

This requires derivatives of the kernel (covariance) function.
Following Dragiev et al. [3], we use the squared exponential
kernel covariance function:

k(xi,xj) = C exp

(
−‖xi − xj‖22

2`2

)
+ σ2

mδij

which specifies the correlation of the signed distance between
two spatial points. This covariance depends on a scale C ∈
R, bandwidth ` ∈ R, and measurement noise σ2

w ∈ R, which
we set using maximum-likelihood estimation [11].

The derivatives of this covariance function are:
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We can use these definitions to form a joint covariance matrix
for gradient prediction

K̃(Xi,Xj) =

[
K(Xi,Xj) K(Xi,5Xj)
K(5Xi,Xj) K(5Xi,5Xj)

]
Then, given gradient observations of an SDF 5y at spatial
locations X , we can predict both the signed distance and
gradient at a point x as:

[
f(x)
5f(x)

]
=

[
m(x)
5m(x)

]
+

K̃(X ,x)ᵀ(K̃(X ,X ))−1
[

y −m(X )
5y −5m(X )

]
II. QUALITY APPROXIMATION

Our goal is to find a grasp g that maximizes PF given a
GPIS mean and variance function µ, σ2:

g∗ = max
g∈G

P
(
QF (ĝ, f) > 0 | g, µ, σ2

)
. (1)

Direct optimization of Equation (1) requires a computa-
tionally expensive integration to evaluate the objective for
each grasp. However, the probability of force closure on the
the mean SDF µ, P̃F (g, µ), may be a reasonable approxima-
tion of PF (g, µ, σ2) under the following conditions:

1) The center of mass z is within δ of its expectation
E[z] with high probability, P (‖z− E[z]‖2 > δ) ≈ 0
for some δ > 0.

2) The shape uncertainty along grasp approach v up to
the contact locations c̃i on the mean shape is less than
some small τ > 0, σ2(c̃1) < τ.

Consider a desired grasp g and GPIS mean µ and variance
σ2 as defined in Section V of the original paper [8]. Let
c̃ = (c̃1, c̃2) denote the contact points for a grasp g on the
mean SDF µ, determined using a search over a discrete set of
points along the line of action. Let A(f) denote the event that
the parallel jaws contact an SDF f before reaching c̃1 when
attempting g and passing over a discrete set of sample points.
Also, let B(f) denote the event that c̃1 is not a zero crossing
of SDF sample f according to the definition of Section ??,
|f(c̃1)| > ε.

Formally, our first assumption is that P (A(f)) < δ for
some δ ∈ (0, 1) and that σ2(c̃1) < τ2 for some τ ∈ R



and τ << ε. Under these assumptions, for any SDF f we
have |f(c1)| ≤ |µ(c̃1) ± 1.96σ(c̃1)| < ε + 2τ ≈ ε with
approximately 95% probability, since N (µ(c̃1), σ2(c̃1)) is a
1-dimensional Gaussian [9]. Therefore c̃1 is still likely to
be a zero crossing for other sample SDFs from the GPIS.
Furthermore, the probability that we do not contact the
surface at c̃1 when attempting grasp g is:

P (A(f) ∪B(f)) ≤ P (A(f)) + P (B(f))

≤ δ + 0.05

Therefore c̃1 will be the computed contact point for approx-
imately (0.95− δ) of SDFs sampled from the GPIS.

Our second assumption is that z ≈ E[z|µ, σ2], which
makes P̃F (g, µ) a reasonable approximation of PF (g, µ).
Empirically we found that the variance of the center of mass
is less than the grid resolution for 7 out of 8 of the test
objects.

We encourage τ to be small using by penalizing the
uncertainty σ2 by λ ∈ R, λ > 0.

maximize
g∈G

P̃F (g, µ)− λ(σ2(c̃1) + σ2(c̃2)) (2)

High values of λ, which correspond to smaller τ , may in-
crease the accuracy of the approximation for selected grasps
but may discard grasps with high PF . Small values of λ
may increase the set of possible grasps but the approximation
will become increasingly inaccurate. In practice λ can be set
using cross-validation over a set of validation shapes, similar
to choosing a regularization penalty in regression models
[1], [5]. The λ penalty encourages GP-GPIS-OPT to avoid
regions of uncertainty, unlike past algorithms that use GPIS
to encourage exploration [4].

III. ADDITIONAL EXPERIMENTS

This section describes additional details on experiments
on GP-GPIS-OPT

A. Rate of Convergence

Fig. 1 shows the probability of force closure PF for grasps
chosen by GP-G (the GP-GPIS-OPT algorithm) and GP-
P, ranking a set of grasps using Monte-Carlo integration,
versus the number of random grasp samples on Object D,
the toy plane. For GP-P the number of samples refers to the
number of randomly selected grasps to be ranked, and for
GP-G the number of samples refers to the number of random
initializations. The parameters of the algorithms were an
approach uncertainty of σg = 1.5 and friction coefficient
γ = 0.4, chosen to eliminate grasps with PF = 0.99.
We see that GP-G plans grasps with higher PF for the
sample number of random initializations, and in only 2
iterations plans a grasp with higher PF than the grasp
planned by GP-P over all samples. The convergence here is
not necessarily indicative of runtime in seconds per sample,
as GP-P requires a Monte-Carlo integration over samples
of shape and grasp perturbations and GP-G runs Sequential
Convex Programming.
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Fig. 1. Comparison of the probability of force closure PF versus number
of samples for Object D, the toy plane, averaged over 3 random sample
sequences. We compare grasps planned by GP-P, which plans the grasp with
the highest probability of force closure PF from random grasp samples, and
GP-G, which plans grasps using GP-GPIS-OPT. The number of samples for
GP-G is the number of random initializations for the algorithm.

B. Scaling with Shape Resolution

We also studied the time complexity of our algorithm
with respect to the resolution of the GPIS. We compared
GP-GPIS-OPT with GP-P, the method of using Monte-Carlo
integration to evaluate and rank a set of 1000 grasps [2],
[6], [7]. Specifically, we compare the average runtime of our
algorithm for a single initial grasp with the average time
to sample 1000 shapes, a bottleneck in the Monte-Carlo
evaluation of PF . We do not attempt to compare the number
of samples necessary to achieve the grasp with maximum
PF for either method because it can vary significantly based
on the ordering of the random initial grasps.

The trend of the runtimes for each algorithm over increas-
ing shape resolution for Object B, the toy plane, is plotted
in Fig. 2. We see that although the method of ranking ran-
dom grasps by evaluating PF using Monte-Carlo integration
performs better for low-dimensional grids, our method has
a lower runtime per initialization once the grid size exceeds
55×55 and appears to have a roughly quadratic scaling with
grid dimension M versus the O(M6) complexity of shape
sampling. Our current implementation is also not currently
optimized for speed and may experience significant speed
increases when designed for high-performance. This suggests
that when the space of possible grasps is larger, our algorithm
may be the better choice. This includes selecting parallel jaw
grasps on 3D GPIS models or optimizing over the many joint
angles of a multi-fingered gripper.

C. Sensitivity to Approach Noise

We qualitatively compared grasps chosen by our algorithm
with different patterns of shape uncertainty and uncertainty
in the grasp approach, σ2

g , on Object D, the metal toy
plane. We compare grasps selected with σ2

g = 0.0 (no grasp
uncertainty), σ2

g = 1.0, and σ2
g = 5.0 in Fig. 3. With

smaller levels of uncertainty, the algorithm favors grasping
the endpoints of the plane where there is little uncertainty
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Fig. 2. Comparison of the runtime in seconds versus the dimension of the
2D GPIS grid in pixels for our algorithm versus ranking an exhaustive set
of grasps using Monte-Carlo integration. The runtime for our algorithm is
measured by the average optimization time per initial sample in the inner
loop of our algorithm versus the time to sample 1000 shapes, a bottleneck
in the Monte-Carlo evaluation of PF . Both quantities shown here are for
Object B, the toy plane. Our method exhibits better scaling with increasing
shape resolution, suggesting that a speed-optimized implementation of our
algorithm could be more appropriate for selecting robust grasps on 3D
objects in time-sensitive applications.

Fig. 3. Comparison of grasps chosen by our algorithm on Object B, the
toy plane, with varying levels of grasp approach uncertainty σ2

g .

but also little room for error. With increasing uncertainty the
algorithm selects a grasp the plane at the front of the plane
since the there is a greater surface area tangent to the grasp.
At high levels of uncertainty the algorithm cannot reliably fit
the parallel jaws on the front of the plane without contacting
the wings, and thus selects a grasp near the wings of the
plane.

REFERENCES

[1] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2009.

[2] V. N. Christopoulos and P. Schrater, “Handling shape and contact
location uncertainty in grasping two-dimensional planar objects,” in
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS).
IEEE, 2007, pp. 1557–1563.

[3] S. Dragiev, M. Toussaint, and M. Gienger, “Gaussian process implicit
surfaces for shape estimation and grasping,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), 2011, pp. 2845–2850.

[4] ——, “Uncertainty aware grasping and tactile exploration,” in Proc.
IEEE Int. Conf. Robotics and Automation (ICRA). IEEE, 2013, pp.
113–119.

[5] G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation
as a method for choosing a good ridge parameter,” Technometrics,
vol. 21, no. 2, pp. 215–223, 1979.

[6] B. Kehoe, D. Berenson, and K. Goldberg, “Estimating part tolerance
bounds based on adaptive cloud-based grasp planning with slip,” in
Proc. IEEE Conf. on Automation Science and Engineering (CASE).
IEEE, 2012, pp. 1106–1113.

[7] ——, “Toward cloud-based grasping with uncertainty in shape: Esti-
mating lower bounds on achieving force closure with zero-slip push
grasps,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA).
IEEE, 2012, pp. 576–583.

[8] J. Mahler, S. Patil, B. Kehoe, J. van den Berg, M. Ciocarlie, P. Abbeel,
and K. Goldberg, “Gp-gpis-opt: Grasp planning under shape uncer-
tainty using gaussian process implicit surfaces and sequential convex
programming,” in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA). IEEE, 2015.

[9] D. F. Morrison, “Multivariate statistical methods. 3,” New York, NY.
Mc, 1990.

[10] E. Solak, R. Murray-Smith, W. E. Leithead, D. J. Leith, and C. E.
Rasmussen, “Derivative observations in gaussian process models of
dynamic systems,” 2003.

[11] O. Williams and A. Fitzgibbon, “Gaussian process implicit surfaces,”
Gaussian Proc. in Practice, 2007.


