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Abstract— Suturing is an important yet time-consuming part
of surgery. A fast and robust autonomous procedure could
reduce surgeon fatigue, and shorten operation times. It could
also be of particular importance for suturing in remote tele-
surgery settings where latency can complicate the master-slave
mode control that is the current practice for robotic surgery
with systems like the da Vinci R©.

We study the applicability of the trajectory transfer algorithm
proposed in [12] to the automation of suturing. The core idea
of this procedure is to first use non-rigid registration to find a
3D warping function which maps the demonstration scene onto
the test scene, then use this warping function to transform the
robot end-effector trajectory. Finally a robot joint trajectory
is generated by solving a trajectory optimization problem that
attempts to find the closest feasible trajectory, accounting for
external constraints, such as joint limits and obstacles.

Our experiments investigate generalization from a single
demonstration to differing initial conditions. A first set of
experiments considers the problem of having a simulated Raven
II system [5] suture two flaps of tissue together. A second set
of experiments considers a PR2 robot performing sutures in a
scaled-up experimental setup. The simulation experiments were
fully autonomous. For the real-world experiments we provided
human input to assist with the detection of landmarks to be fed
into the registration algorithm. The success rate for learning
from a single demonstration is high for moderate perturbations
from the demonstration’s initial conditions, and it gradually
decreases for larger perturbations.

I. INTRODUCTION

Robotic systems for minimally invasive surgery, such
as the da Vinci R© system, are becoming increasingly
widespread. Currently, these systems are operated in master-
slave mode—the surgeon completely controls the movement
of the robot. There are several reasons why it would be useful
to perform surgical subtasks such as suturing autonomously.
First, some automation of repetitive tasks would give the
surgeon some rest and reduce fatigue. Second, computer
control could enable these tasks to be performed faster
and more precisely by overcoming the inherent limitations
of the human nervous system for speed and precision of
motion. Third, master-slave mode tele-operation performance
degrades with increased transmissions delays. Autonomous
low-level control could enable tele-surgery in the presence of
longer transmission delays by having the surgeon intermit-
tently issues high-level commands, like “cut here”, “suture
here”, which would then be controlled at a finer timescale
by software.

Suturing, along with other surgical tasks, requires a long
series of complex motions, and the margin of error is
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Fig. 1. Image on the left shows the suturing setup as it was in the
demonstration. Image on the right shows a test scene in which the right
suturing pad is in a different location. The grid visualizes the warping
function, which is used to transfer the demonstrated trajectory to the test
setting. The grid on the left is uniform box-like, showing the identity
transform, while it is non-rigidly bent and rotated on the right. The suture
is shown in pink. The training scene shows the demonstrated trajectory (in
red). The test scene shows the transferred trajectory (in light blue) as well
as the original demonstrated trajectory (in red).

small. The operating environment, including the tissue to be
sutured, may vary widely in position, shape, and material
properties.

Building on recent advances in learning from demon-
strations and trajectory optimization, this paper presents
promising results that might bring us closer to real-world
autonomous suturing capabilities. At the core of our proce-
dure is the trajectory transfer algorithm recently proposed
by the authors in [12], which takes trajectories from human
demonstrations and adapts them to a new environment ge-
ometry.

Our experiments consider a simplified suturing scenario,
both with a simulated Raven II system [5] and with a real
PR2, and show that a single demonstration (provided by a
human) can be generalized to a variety of initial conditions.

Videos of our results are available at:
http://rll.berkeley.edu/iros2013suturing

II. RELATED WORK

Some of the earliest work on automating laparoscopic
procedures was performed by Kang et al. [6], [7]. They
focused on the mechanical design and low-level control of a
surgical robot. Recent work has addressed tying knots in the
surgical setting based on human demonstrations. Mayer et
al. [8] used ideas from fluid dynamics to modify trajectories
to avoid obstacles. Mayer et al. [9] used a recurrent neural
network to as a controller for part of a surgical knot-tying
task, based on demonstrations. van den Berg et al. [14] used
an iterative learning procedure to learn to tie an overhand

http://rll.berkeley.edu/iros2013suturing
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Fig. 2. Schematic diagram of the procedure applied at testing time for each trajectory segment. “Demo” is short for “demonstration”. “Poses” and “joints”
refer to pose trajectories and joint trajectories, respectively.

knot rapidly with an imprecise robot. Padoy and Hager [10]
automated several subtasks in surgery, such as pulling a
needle out of tissue, and they developed a system that
automatically recognizes from the surgeon’s motion when
these subtasks can be performed. Staub et al. [13] described a
method to automate needle piercing in laparoscopic surgery.
Their technique involves using a laser pointer to specify the
stitching area and a switching visual servoing approach for
positioning the needle precisely.

There is a large body of work on learning from demon-
strations. In this work we perform an empirical study of
the applicability of the trajectory transfer approach presented
in [12] to the task of suturing. We refer the reader to this
work for a discussion on its relationship to other work on
learning from demonstrations.

III. BACKGROUND: TRAJECTORY TRANSFER THROUGH
NON-RIGID REGISTRATION

Our method for generating end-effector trajectories in this
paper is based on the previous work of the authors in [12].
This section reviews that method; the reader is referred to
the original paper for a more complete exposition.

The overall pipeline is illustrated in Figure 2, and consists
of three steps:

Step 1: Find a transformation f from the demonstration
scene to the test scene.

We assume that there is a list of 3D points x1,x2, . . . ,xK

in the demonstration scene and a list of points x′1,x
′
2, . . . ,x

′
L

in the test scene. When starting out, however, their correspon-
dence is unknown. We use the method of Thin Plate Spline
Robust Point Matching [1] to find both their correspon-
dences, encoded by a index-mapping function Π(·) (which
maps from indices of points in demonstration scene to indices
of points in the test scene) and a warping function f mapping
x1,x2, . . . ,xK to their partners x′Π(1),x

′
Π(2), . . . ,x

′
Π(K).

The method of thin plate splines [4], [15] solves the
following optimization problem:

minimize
f ,Π

K∑
i=1

‖x′Π(i) − f(xi)‖2 + REGULARIZER(f) (1)

f is required to be an expansion in terms of radial basis
functions

f(x) =

K∑
i=1

aiK(x,xi) + Bx + c (2)

where K is the 3D thin plate spline kernel K(x,x′) = −‖x−
x′‖. The regularization term takes the form

REGULARIZER(f) = λ tr(ATKA) + β‖ log s‖2 (3)

where s is the vector of singular values of B; K is the

kernel matrix, with entries Kij = K(xi,xj); A =

aT1
· · ·
aTK

;

λ and β are parameters. The ‖ log s‖2 term of this regularizer
encourages B to be a rotation with unit singular values. This
regularization on the singular values is not typically used
with thin plate splines, so we had to modify the standard
fitting procedure to account for this. Our technical report
[11] describes the details of this modification.

Step 2: Apply transformation f to the demonstrated grip-
per trajectory. The gripper poses along the demonstration tra-
jectory are specified by positions x1, . . . ,xT and orientations
R1, . . . ,RT . We transform the positions and orientations as
follows, to adapt the trajectory to the test situation:

xt → f(xt) (4)

Rt → orth
(
Jf (xt)Rt

)
. (5)

Here, Jf is the 3× 3 Jacobian matrix

Jf =

∂fx/∂x ∂fx/∂y ∂fx/∂z
∂fy/∂x ∂fy/∂y ∂fy/∂z
∂fz/∂x ∂fz/∂y ∂fz/∂z

 , (6)

and orth(·) is a function that orthonormalizes a 3×3 matrix
(e.g. using the SVD).

Equation (4) says that we apply the warping function f to
all of the positions. To transform rotations, we first observe
that a reasonable way to transform a vector v at a point p
through a function f is to multiply it by Jf (p), the Jacobian.
Equation (5) applies this transformation to the x, y, and z
axes of the gripper (which are the columns of matrix Rt),
and then orthogonalizes the resulting basis so it corresponds
to a gripper pose (i.e., it is a rotation matrix).

Step 3: Convert the end-effector trajectory into a joint
trajectory. To enable the robot to follow the trajectory as
closely as possible while satisfying constraints, we formulate
the following optimization problem on the joint trajectory



Fig. 3. Illustration of trajectory warping procedure on a cartoon 2-D
example. Left: training situation. Right: testing situation.

θ1:T :

minimize
θ1,...,θT

[
T−1∑
t=1

‖θt+1 − θt‖2 + µ

T∑
t=1

‖ err
(
T̃−1

t · fk(θt)
)
‖`1

]
subject to

No collisions, with safety margin dsafe

θmin ≤ θ1:T ≤ θmax (Joint limits)
(7)

Here, T̃t is the desired end-effector pose at time t, fk(·)
indicates the robot’s forward kinematics function applied to
θt, and µ is a scalar parameter. err(·) is an error function
that maps a pose in SE(3) to an error vector in R6. In
particular, after decomposing a pose T into translation p
and quaternion rotation q, the error vector is simply given
by (px, py, pz, qx, qy, qz), i.e., the translation and the rotation
part of the quaternion.

We will illustrate steps 1 and 2 of the above procedure
with a two-dimensional toy example, where the task is to
draw a two-dimensional curve through four guide-points.
Note that this example merely illustrates the transformation
of end-effector positions, not orientations. The left image of
Figure 3 shows the training situation, environment shown
in solid lines, gripper tip trajectory shown as a dotted line,
coordinate grid lines shown as thin solid lines. The right
image shows the test situation for which we want to predict
a good gripper trajectory. The registered points are the four
corners. First, we use the method of thin plate splines [15]
to find a function that maps the four corners of the square
in the training situation to the four vertices of the new
quadrilateral. Then we apply the found warping function to
the demonstrated path to obtain a new path (dotted line),
which has the same topological characteristics. The warped
coordinate-grid lines are shown.

IV. SUTURING EXPERIMENTS WITH RAVEN II IN
SIMULATION

We performed a set of experiments in a physics simulation
environment, using the Raven II [5]. Compared to the PR2
experiments of the next section, these simulation experiments
are interesting because (1) being in simulation, they are more
readily reproducible and a larger number of experiments can
be run, (2) begin a surgical robot, the Raven II has different
kinematics than the PR2: non-redundant arm kinematics and
a remote center of motion.

Fig. 4. Points (red) on the surface of the suturing pad used for registration.

The task we study in this paper is to perform a suture stitch
(with puncture and knot), and we assume that the robot has
a mechanism to pass the needle between its gripper tips such
as in the Endo StitchTM system.

We used OpenRAVE [3] to load the model of the robot and
do kinematics calculations, and we used a custom simulation
environment based on the Bullet Physics Library [2].

A. Training

The simulated Raven II is tele-operated using a pair of
Phantom OMNIsTM.1

We studied trajectory transfer from a single demonstration.
The demonstration consists of a sequence of segments (i.e.,
subtasks, each taking several seconds), which are illustrated
in Figure 5. The segmentation is specified at the time of
demonstration by pressing a foot-pedal to indicate the start
of a new segment. The segmentation is crucial because at test
time, trajectory transfer is performed several times—once per
segment. At the beginning of each new segment the current
scene is registered with the beginning of the corresponding
demonstration segment, and then the trajectory from that
demonstration segment is transferred.

B. Registration

We use full state information from the simulation to obtain
a point cloud for registration. The demonstrator specifies
which set of points matter for registering each segment. If
the segment involves manipulation of the rope, for example
when tying the knot, only points along the rope are used. If
the trajectory segment involves interacting with the suturing
pad, as when puncturing, points on the surface of the suturing
pad are used. Figure 4 visualizes the points on the suturing
pad used for registration.

To find the correspondences and the registration function
f we use the TPS-RPM algorithm [1], as described in [12].2

1This was a challenging task, and it took several hours of practice to
obtain a good demonstration.

2While full state information gives us access to correspondences, we
found that using these correspondences in the naive way, e.g., putting the
suture thread into correspondence based on arc-length, did not necessarily
result in the “right” registration. Using arc-length for correspondences does
not take into account where the suture crosses a flap or itself. On the
other hand, TPS-RPM will correctly match together points whose local
neighborhoods are similar.



Fig. 5. Snapshots of the scene at the start of each segment (left to right). The final scene shows a knot. Top row shows the segments from the human
demonstration. Bottom row shows the transferred trajectory when the right suturing pad was perturbed by ∆T = (−2, 0, 0)cm,∆R = (0◦, 40◦, 40◦).

C. Experiments

To test trajectory generalization in the presence of non-
rigid perturbations, the left flap of the suturing pad was kept
unchanged but the right flap was perturbed by translations
and rotations. We scaled the perturbations in the different
translation and rotation directions so that the individual
perturbations are about equally challenging. Specifically, we
chose 0.25 cm for x translation, 0.5 cm for y, z translation,
and 5◦ for rotation around x, y, z. See Figure 6 for a
visualization of the perturbations applied.

Fig. 6. Perturbations applied to each of the six degrees of freedom of
the right suturing pad. Top row shows translation perturbations of −0.5cm
along x and 1cm along y and z, in sequence from left to right. Similarly,
the bottom row shows rotation perturbations of 10◦ around each axis.

We considered all the 26 = 64 possibilities for each
unit perturbation to be active or not. Then we considered
re-scaling each of these 64 perturbations by a factor of
1, 2, . . . 10, giving 640 trials in total. A test run was con-
sidered a success if the suture was correctly routed through
each flap’s piercing and a knot was tied at the end.

Figure 7 reports the success rate as a function of distance
from the single demonstration. The graph on the left shows
the success rate as a function of the scaling factor. The
graph on the right shows the success rate as a function
of perturbation distance of the applied perturbation vector,
which is defined as the number of unit perturbations that
need to be composed to obtain the test perturbation. For
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Fig. 7. Performance on Raven II suturing experiments. Left: scaling steps
refer to the scale i used when generating the perturbation vector (see text for
details). For each scaling step, a set of 64 tests were done corresponding to
all the 26 perturbations of that scale. Right: Success rate versus Perturbation
distance. In both cases the error-bars indicate ± one standard deviation
calculated as

√
r(1−r)

N
, where r is the success ratio and N is the number

of runs from which r was computed.

example, a perturbation of (0.5, 0, 1.5, 5◦, 10◦, 0) would have
a perturbation distance of 2+0+3+1+2+0 = 8. The results
show that the task succeeds reliably for small perturbations
but fails as the size of the perturbations is increased.

The failures occurred when grasping the suture thread
and passing the thread through the holes; these parts of the
task require high precision in position and orientation. The
most common underlying cause of these failures was that
the registration gave an excessively distorted transformation
f due to the configuration of irrelevant portions of the
scene–in particular, the suture thread—causing a bad gripper
trajectory. In future work, we will try to address this problem
by modifying the registration procedure to emphasize the
parts of the scene that are relevant to the current motion.
A second cause of missed grasps was that the suture moved
while executing a segment in open-loop. This problem could
potentially be solved by frequent re-planning.

Figure 8 illustrates the dependence of task success on
warping cost (as defined in Equation (1)) and the maximum
position and orientation error of the grippers. The maximum
position error is computed as the maximum over all segments
and timesteps of the distance from the gripper to its target
position in transferred trajectory. (Recall that the transferred
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Fig. 8. The dependence of success rate on warping cost and gripper pose
error. In the top row, all test runs below the horizontal blue lines were
successful. Bottom row shows the distribution of success rate as a function
of (a) warping cost (b) gripper orientation error (c) gripper position error
(left to right). These plots are based on the results of 640 test runs on a
Raven II surgical robot in simulation. The error-bars indicate ± one standard
deviation calculated as in Figure 7.

end-effector trajectory may be infeasible, as discussed in
Section III.) Orientation error is defined similarly.

Figure 5 illustrates our algorithm in action. The top row
shows a snapshot at the start of each segment during the
demonstration. In the first segment of the task, the right arm
moves to the front and the left arm punctures the right flap of
the tissue. In the second and the third segment, the second
flap is punctured. In the fourth and the fifth segment, the
suture loops around once. In the last segment, the suture
loops around a second time, thereby completing a knot.

Note that the task is broken into segments at the points
in time when a high-precision interaction between the robot
and its environment needs to occur. For example, segment
three starts before the second puncture and segment five starts
before the first loop. A video of the trial from Figure 5 and
other illustrative videos are available at the URL provided in
the Introduction.

V. SUTURING EXPERIMENTS WITH PR2

The experimental procedure on the PR2 is similar to the
one used for the experiments in simulation. The key differ-
ence is that we do not have access to full state information.
We provide additional information by having a human in the
loop, who annotates the scenes with the relevant information
for registration.

A. Overview

The sequence of segments for tying one suture stitch are
as follows:
• Pick up the needle and move into view.
• Pick up one piece of tissue.
• Pierce held piece of tissue.
• Release held piece of tissue.
• Hold down second piece of tissue and pierce.
• Pull the needle and thread through both pieces of tissue.
• Tie a surgeon’s instrument-tied knot.

We did not include the knot tie in the quantitative exper-
iment.

The segment boundaries were chosen qualitatively, where
the main consideration was that the subsequent movement
could be executed in open loop based on the 3D data obtained
at the beginning of the segment.

We obtained 3D data through three different methods —
AR markers, ROS interactive markers and a simple point and
click interface.

The experimental setup at the start of each segment, along
with the relevant annotations, is shown in Figure 9.

B. Training and Keypoint Annotation

At training time, we record a single high-quality demon-
stration of the complete task. This recording includes the
joint states of the robot and an RGBD video of the task
execution taken from a fixed camera. 3

After data collection, we break up the procedure into
separate segments as listed in the previous section. We then
manually annotate each individual segment. These annota-
tions indicate the parts of the scene that are most relevant to
the following segment of the task.

C. Incorporating normals and orientations into registration

We incorporate surface normals and orientation constraints
into the registration by adding extra points. For a normal, two
points are used: the first point is on the surface (from which
the normal originates) and the second point is ε = 1cm away
from the surface along the normal direction. Similarly, for
orientations we use four points: a first point at the origin,
and three points at a distance of 1cm from the origin in
the direction of local x, y, z. These additional points are
illustrated in Figure 10. Figure 9 shows several snapshots
of this procedure from PR2’s perspective during execution
and illustrates the points, normals and orientations used for
each segment.

D. End-effector trajectory generation

We apply the method described in III, but without the need
to infer correspondences (which are provided by the human-
in-the-loop), to fit a 3D non-rigid transformation and use it
to warp the trajectory of the end-effectors. Note that some
trajectory segments move only one arm, while others move
both arms simultaneously.

The end-effector is either the robot’s gripper or the needle
tip. In the annotation stage, we indicate what the end-effector
is for each segment. It is important to note that whenever the
end-effector is the needle tip, we need to know the precise
pose of the needle relative to the robot’s gripper. To this end,
all segments in which the robot grabs the needle are followed
by “look-at-needle” segments, in which the robot holds up
the needle, allowing to acquire the pose of the tip.

3In the PR2 experiments, we used an ASUS Xtion-Pro mounted to the
robot’s head as our camera.



Fig. 9. Snapshots of the PR2 suturing setup at the start of each segment (left to right). The setup has been rotated by -10◦around y with respect to the
demonstration setup. The relevant annotations in each segment are shown: (1) Orientations of AR markers on the needle stand (2) Points at the top, middle
and bottom of the cut and at the two puncture points. (3) Orientation of the needle tip and normals at the two puncture points (4) Points on the middle
and bottom of the cut and at the right puncture point (5) Point on the middle of the cut and the normal at the right puncture point (6) Orientation of the
needle tip. The last image shows the setup after finishing the experiment. All the points and normals are colored in red. Normal directions are marked
with arrows. Orientations are shown by red, green and blue lines corresponding to local x, y, z respectively.

Fig. 10. Extra points are added when normal and orientation information
at the keypoints are relevant. Left: extra point added for a surface normal.
Right: three extra points added for orientation (at needle tip, needle shown
in gray).

E. Experimental Results
Our experiments on the PR2 consider the task of grasping

the suturing needle, piercing through both sides of tissue
along the cut and pulling the needle through the tissue. This
procedure is illustrated in Figure 9.

The suturing needle is a bent, rectangular shaft with 5mm
side length and has a 3.2mm diameter rope attached to one
end. It sutures through a foam pad with pre-cut holes. The
needle rests in a stand which forces it to stay in a particular
orientation.

We recorded one demonstration with manual annotations
as described above. To investigate the extent to which the
learned trajectory generalizes to different configurations of
the suturing scene, we applied rigid and non-rigid pertur-
bations to the suturing setup and measured the success rate.
We experimented on ±10◦ and ±15◦ rotations along each of
the x, y and z axes. We also applied non-rigid deformations
to our setup, including bending along the x and y axes
and a diagonal pair of holes. Figure 12 shows some of the
experimental setups we worked with.

We did not consider translations in our quantitative evalu-
ation as success in those experiments merely reflects whether
the new setups were within the reachable workspace of the
gripper or not. For small translations of the entire setup, our
experiments succeeded approximately 100% of the time.

The results of our experiments are outlined in Figure
11. The overall rate of success was 87%. For rotations of
10◦ along the three main axes, we found that the robot

Perturbation Success Rate
10◦ x rotation 2/2
15◦ x rotation 2/2

-10◦ x rotation 2/2
-15◦ x rotation 1/2
10◦ y rotation 2/2
15◦ y rotation 2/2

-10◦ y rotation 2/2
-15◦ y rotation 2/2
10◦ z rotation 2/2
15◦ z rotation 0/2

-10◦ z rotation 2/2
-15◦ z rotation 2/2

Bend x-axis 2/2
Bend y-axis 2/2

Diagonal holes 1/2

Fig. 11. Experimental results for PR2 performing pierce and regrasp
subject to different perturbations. Two trials were performed in each
experimental setting. In the bending experiments, the middle of the cut was
raised by 7.5 cm. For the diagonal holes experiments, the distance between
the holes was increased by 2.5 cm. The failure cases were as follows: (1)
one -15◦x rotation experiment failed during the needle pull-through (2)
15◦z rotation experiments failed once in the second pierce and once during
the needle pull-through (3) one diagonal-holes experiment failed in the first
needle pierce.

succeeded 100% of the time in our experiments. However, as
the perturbation of the environment was increased, different
sources error in the overall pipeline became apparent. For the
case of the 15◦z rotation experiments, the trajectory required
was close to the joint limits of the PR2. This caused the
PR2 to miss the second pierce in one experiment and the
needle pull-through in the second experiment. The diagonal
hole experiments were challenging because the testing scene
differed substantially from the demonstration; one of the
experiments failed due to the needle piercing the first hole at
a slightly oblique angle. For the case of of the -15◦x rotation
experiment, the needle got caught in the foam and slipped
out of the gripper while being pulled out. Also note that
the success rate is not the same on mirrored perturbations:
+15◦and -15◦along x or z do not succeed with the same rate.
This is because the task is asymmetric with the left and right
hands performing different actions.



Fig. 12. Snapshots of a subset of the different initial conditions we experimented on. The perturbations in the figures are (from the top left): (1) No
rotation or non-rigid deformation (2) +15◦along x (3) +15◦along y (4) -15◦along y (5) +15◦along z (6) Bend along x raised by 15 cm at center (7) Bend
along y raised by 15 cm at center (8) Diagonal holes, as shown by the arrow, with distance of 18 cm between them.

In summary, our experiments showed a good success
rate even when the experimental setup was rotated or bent.
Failures could be attributed to limitations of our setup that
are either relatively easy to fix or inherent to the scale and
material properties of the experimental setup.

Videos of a few of our experiments are available at the
URL provided in the Introduction.

VI. CONCLUSION

We have studied the applicability of the trajectory transfer
method introduced in [12] to the problem of autonomous
suturing. Our experimental results with the simulated Raven
II surgical robot and a real PR2 suggest that trajectory
transfer could be a powerful building block to bring us closer
to having robots learn to perform challenging manipulation
tasks from demonstrations. Our experimental results showed
that, as one might expect, success rate is highly correlated
with the similarity between the demonstration scene and the
test scene. Using multiple demonstrations could potentially
allow to better cover the set of possible test scenes. Some
important questions for future work include how to optimally
leverage multiple demonstrations in the context of trajectory
transfer, how many demonstrations are needed, and how to
systematically and efficiently obtain a representative set of
training data.
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