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Abstract— We present a novel vision-based grasp point de-
tection algorithm that can reliably detect the corners of a piece
of cloth, using only geometric cues that are robust to variation
in texture. Furthermore, we demonstrate the effectiveness of
our algorithm in the context of folding a towel using a general-
purpose two-armed mobile robotic platform without the use of
specialized end-effectors or tools. The robot begins by picking
up a randomly dropped towel from a table, goes through
a sequence of vision-based re-grasps and manipulations—
partially in the air, partially on the table—and finally stacks the
folded towel in a target location. The reliability and robustness
of our algorithm enables for the first time a robot with general
purpose manipulators to reliably and fully-autonomously fold
previously unseen towels, demonstrating success on all 50 out
of 50 single-towel trials as well as on a pile of 5 towels.

I. INTRODUCTION

In highly structured settings, modern-day robots can be

scripted to perform a wide variety of tasks with mind-

boggling precision and repeatibility. However, outside of

carefully controlled settings, robotic capabilities are much

more limited. Indeed, the ability to even merely grasp a

modest variety of previously unseen rigid objects in real-

world cluttered environments is considered a highly non-

trivial task [26], [13], [2].

Handling of non-rigid materials, such as clothing, poses

additional challenges: they tend to have significantly higher

dimensional configuration spaces and, resultingly, a large

variety of visual appearances. Aside from the environmental

clutter, the object itself could occlude otherwise desirable

grasp points. Moreover, when manipulating deformable ob-

jects, the grasp point will typically affect the configuration

of the object—hence when deciding upon grasp points one

needs to account for both whether the robot arm can reach

them in an appropriate way and whether that particular grasp

would result in an acceptable configuration of the deformable

object. This results in significant additional challenges in

grasp point detection and selection.

The challenges involved in manipulation of deformable

objects are greatly reflected in the state of the art in robotic

laundry folding. Indeed, the current state of the art is far from

enabling general purpose manipulators to fully automate the

task of laundry folding. In fact, even including work that uses

assisting tools such as flip-folds, thus far no comprehensive

success story has been reported for the complete end-to-end

task of reliably picking up a laundry item and folding it.
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In this paper we present an algorithm which addresses one

of the critical challenges in automating laundry folding: grasp

point detection. In particular we focus on one category of

grasp points which is of general interest: detection of corners

of an article of clothing. For many articles of clothing, the

ability to grasp certain corners is a key enabler towards

spreading out and then folding. For the particular task of

folding a towel, being able to grasp the corners reliably pro-

vides many natural paths to satisfactory solutions which are

executable by modern-day robots. Perhaps not surprisingly,

going from a towel randomly placed on a surface area to

holding up the towel by two of its corners is a missing link

in the prior research on automating the towel folding task.

We leverage our algorithm’s capability of reliably detect-

ing the corners of a towel to develop the first system that

uses two generic robotic arms (and a pair of cameras) and

is able to reliably pick up and fold a towel.

Videos of our experimental results are available at:

http://rll.eecs.berkeley.edu/pr/icra10

II. RELATED WORK

We refer the reader to existing surveys [4], [27] for a

more comprehensive literature review on the broad domain

of grasping research. We focus on the areas that are most

closely related to our work: Vision-based grasping in real-

world environments, and prior work towards robotic laundry

folding.

There have been some encouraging results on grasping

rigid objects using vision. The earliest work was mostly

limited to grasping 2-D planar objects. Examples include, but

are not limited to, [6], [19], [5], [12]. More recently, there has

also been substantial progress on vision based grasping for

objects with 3-D structure in cluttered environments. Saxena

and collaborators [26] have proposed algorithms for grasping

previously unseen objects in cluttered environments. They

use supervised machine learning to learn good grasp point

candidates from labeled training data. Platt and collaborators

[23], [24] leverage learning for vision-based grasping in

varying contexts, including bagging groceries. Berenson and

collaborators [2], [3] proposed algorithms for path planning

for vision-based grasping in cluttered environments.

From the application angle, the prior work on robotic

laundry manipulation and folding is most closely related

to our work. To the best of our knowledge none of the

prior work—including the prior work which uses special-

purpose end-effectors—reports successful completion rates

or even successful completions for the full end-to-end task



for picking up an arbitrarily placed towel or clothing article

and bringing it into a nicely folded end-state.

Paraschidis and collaborators [7] describe the isolated

executions of grasping a layed-out material, folding a layed-

out material, laying out a piece of material that was already

being held, and flattening wrinkles.

Some of the prior work describes robots using tools and

the design of special purpose end-effectors as a step towards

laundry folding. For example, Osawa and collaborators [21]

developed a robot capable of using a “flip-fold” for folding

and a plate for straightening out wrinkles. They assume the

robot starts the process by already holding two appropriate

points of the piece of clothing.

There is also a body of work on recognizing categories of

clothing, some of the work includes manipulation to assist

in the categorization. For example, Osawa and collaborators

[22] and Hamajima and Kakikura [10] present approaches

to spread out a piece of clothing using two robot arms and

then categorize it.

Salleh and collaborators [25] present an inchworm gripper

for tracing the edge of a piece of clothing. The gripper

assists in enabling two robotic manipulators to get into the

state of holding a piece of cloth by two neighboring corners.

They report a 65% success rate on grasping the first corner,

identified as the bottommost point of the towel in the image

once the towel has been picked up from the table and held

up by one of the arms. The overall success rate in holding

up the towel by two neighboring corners is 50%. A range of

gripper designs is presented in [18].

Yamakazi and Inaba [29] present an algorithm that rec-

ognizes wrinkles in images, which in turn enables them to

detect clothes laying around. Kita and collaborators [14] fit

the geometry of the silhouette of a hanging piece of clothing

to the geometry of a mass spring model of the same piece

of clothing and are able to infer some 3-D information about

the piece of clothing merely from the silhouette.

Balkcom and Mason [1] developed a robot capable of

origami.

The work by Kavraki and collaborators [15], [17], by

Matsuno and Fukuda [16], and by Gopalakrishnan and Gold-

berg [9] considers planning for manipulation of deformable

objects. While their focus was largely on the planning task

and our contribution is primarily in vision based perception

aspects, it could be an interesting future direction to also

include the clothing article into the motion planner.

III. GRASP POINT DETECTION

A. Overview

Due to the wide range of 3-D deformation possible of even

a single article of clothing, and the compounding factor of the

wide variation in appearance and material properties across

multiple articles of the same type, the geometric properties

of borders of the cloth, by which we mean actual cuts in

or ends of the fabric, are among few other robust local

features for grasp point detection. For example, intuitively,

the key parts of a t-shirt, namely the sleeves, neck, and lower

hem, are well-identified locally as circular interior borders,

and may be distinguished by the size; on a towel, the four

corners can be locally identified as two exterior borders (of

sufficient length) that meet at approximately a right angle (in

the surface).

Having established that the border geometry is intuitively

quite useful in locating key grasp points of cloth, the question

remains of how to actually estimate the border geometry

from sensor data. We focus in particular on the case of using

images of the cloth for this purpose. Depth discontinuities

in the image, identified using, e.g., stereo or foreground-

background segmentation, are an obvious cue. Of course,

in any particular configuration of the cloth, some borders

may not appear as depth discontinuities, or may not appear

at all for that matter, but more serious is the problem that

folds in the cloth also appear as depth discontinuities. The

key distinguishing feature, and which is at the core of our

proposed method, is the sharpness of curvature of the cloth.1

Depth-discontinuity edges in an image have a key property

that is leveraged by our algorithm: given a point u in

an image along an edge with direction e (which specify

a line ℓ in the image) known to correspond to a depth-

discontinuity, it must be the case that the 3-D plane P that

projects to ℓ is tangent (up to error introduced by the image

discretization) to the surface of the object being imaged at the

point p corresponding to u. Thus, if the same point p (or in

general, points within a small region) on the object projects

to a depth-discontinuity edge in multiple camera views of

the same object (assumed to either be known or estimated

using standard techniques in multi-view geometry), then we

obtain multiple tangent planes at p (or for points within a

small distance of p), where the maximum angular difference

between the normals of these tangent planes provides a lower

bound on a measure of curvature at p.

It can be shown that our proposed algorithm computes

an approximation to this estimate of curvature based on the

amount of observed variation in the tangent plane nearby

each point p that projects to a point on a depth-discontinuity

boundary in an image, under the simplifying assumptions

that the multiple views correspond to rotations by a fixed

incremental angle φ of the object about a vertical axis

through the center of the object (a true assumption in our

experimental setup) and the tangent planes in all of the views

correspond to the same plane in the frame of the camera

(approximately holds if the optical flow between the images

of the point is small).

B. Border Classification Algorithm

Based on the intuition developed in the previous section,

we define a filtering algorithm that incrementally processes

a sequence of images of an article of clothing in order,

incrementally classifying for each image t a subset Bt of

the set Et of points that appear as depth discontinuities in

the image as corresponding to actual borders of the cloth.

1Of course, a very sharp fold may have identical appearance to a border
even from all views, and indeed some borders may in fact be a sewn folded
edge, but when the cloth is hanging freely, particularly after having been
shaken, such a sharp fold is highly unlikely to remain (unless it is sewn).



Since the algorithm is restricted to classifying points that

actually appear as depth discontinuities in the image, a

border that happens to be lying flush against another part

of the cloth cannot be detected. Furthermore, in order to

obtain a very precisely-localized set of depth-discontinuity

points at high resolution (important for sufficient sensitivity

in distinguishing the curvature of a moderately sharp fold

from that of an actual border), a very precise foreground-

background segmentation of the input images is computed,

and only points on the boundary between foreground and

background are considered depth-discontinuities. Thus, only

depth discontinuities against the background are considered.2

The algorithm incrementally computes for each frame t

a score St(u) specifying an estimate of the curvature at

each depth-discontinuity image edge point u = (u, v); at

all points u that do not appear as depth-discontinuities in

frame t, the score St(u) = 0. To track depth-discontinuity

points between frames, a dense sub-pixel optical flow map

(with associated confidence in [0, 1]) from pixels in the

current frame to pixels in the previous frame is computed.

Interpreting the confidence measure probabilistically, the

score St(u) is (1 plus) the expected value of the number

of consecutive frames prior to t for which the 3-D point p

on the object corresponding to point u in image frame t has

been tracked while remaining a depth-discontinuity edge.

Specifically, for the first frame, the score St(u) is initial-

ized to 0, and for all subsequent frames is defined by

St(u) ≡

{

Ct(u) · St−1(u + Ft(u)) + 1 if u ∈ E′

t
;

0 otherwise.
(1)

E′

t
is obtained by dilating the set Et of depth-discontinuity

points for frame t inwards (in the foreground region only) by

δ pixels to account for optical flow not being well-defined

(and in practice having a very low confidence score) at actual

edge points. Ft(u) is the optical flow map that transforms a

point u = (u, v) in the current frame into the corresponding

point u
′ = (u′, v′) in the previous frame, and Ct(u) is the

corresponding confidence score.3

The actual set Bt of border points is computed as the set

of edge points u ∈ Et for which the score St, averaged over

a circular disk (restricted to the foreground only) around u

of radius δ, exceeds a threshold t.

C. Corner Grasp Point Detection

Based on the computed map of border classifications,

candidate corner grasp points are selected using a RANSAC-

2Although this may appear be overly restrictive and lead to a scarcity of
detections, it is in fact not nearly as limiting as it may seem: because the
focus is on grasp point detection, it is not necessary that a detection be made
from every angle, only that it be possible from some angle; furthermore,
borders that are flush against another part of the cloth (and in a freely
hanging configuration, any border that is not against a background is likely
to be fairly close to another part of the cloth) would likely require a much
more sophisticated motion planning for grasping that takes into account
the deformation that would result from contacting the cloth prior to the
grasp, in order to avoid accidentally snagging additional parts of the cloth
in the process of the grasp. In contrast, borders against the background can
typically be grasped using traditional rigid object motion planning.

3Because Ft provides a sub-pixel (real-valued) estimate of the flow
vector, St−1(u + Ft(u)) is evaluated using bilinear interpolation.

based algorithm that fits corners to the border points [8].

Two border points are considered compatible if they are

each on the inside of the line corresponding to the other

point and the corner they form has an angle between 45◦

and 110◦. Each RANSAC iteration, two compatible border

points are randomly sampled from Bt. Because each border

point has a corresponding 2-D edge direction (based on the

estimated edge direction in the image), two border points,

each specifying a 2-D line in the image, are sufficient to

specify a corner. Points within dinlier pixels of each of the

two rays formed by the corner are considered inliers, and the

size of each corner side is defined to be the maximum length

for which the cumulative gap amount between border points

projected back onto the line segment (starting at the corner

tip) is less than ℓgap. The size of the corner is defined to be

the minimum of the sizes of the two sides. The complete

RANSAC procedure consists of many sampling attempts,

from which the largest corner with size at least ℓmin, if

any, is selected. Repeated runs of the complete RANSAC

procedure are used to fit as many 2-D corners (with disjoint

corresponding inlier sets) as possible in the image.

D. Filtering based on 3-D localization

For each of the 2-D corners found by the RANSAC

algorithm, a plane is fit to the high-confidence 3-D points

(computed using stereo4) corresponding to the image points

contained in the corner; the fit is weighted according to a

Gaussian kernel centered on the tip. If there is insufficient

total weight on the high-confidence points, or more than 10%

of the weight lies on points that are more than 0.4 cm from

the optimal plane, the corner is rejected.

If the candidate is accepted, the actual grasp point and

orientation are chosen according to the desired grasp position

and orientation relative to the corner tip as well as workspace

constraints of the robot, based on the 3-D triangle given by

the plane fit. A chosen grasp position and orientation can be

checked for feasibility using a standard motion planner (e.g.

PRM-based) that also takes into account the rest of the cloth

as an obstacle (by using the stereo-derived point cloud).

IV. APPLICATION TO ROBOTIC TOWEL FOLDING

Integrating as a key component the grasp point detection

algorithm described in §III, we implemented a complete pro-

cedure for folding and stacking a pile of randomly dropped

towels on a table. The procedure, which involves a sequence

of vision-based grasps, re-grasps and manipulations, partially

in the air, partially on the table, is modeled as a state machine

as illustrated in Fig. 2. We used a prototype version of the

Willow Garage PR2 robotic platform [28], shown in Fig. 1.

The grasp point for the initial pickup from the pile

(Fig. 2a-b) is estimated using a combination of foreground-

background segmentation and stereo correspondence applied

to the stereo pair on the head to select a central point that can

be reached by one of the two arms; a fixed grasp orientation

perpendicular to the (known) table is used. If multiple towels

4Note that the stereo correspondence need only be computed for images
where a 2-D corner is detected.



Fig. 1. Our robotic platform (the PR2) consisted of two 7-DOF robotic
arms mounted to a 1-DOF vertical-slide torso on a mobile base supporting
omni-directional position control. A stereo pair of 640x480 color cameras
were mounted to the pan-tilt sensor head, and a stereo pair of high-
resolution 3312x4416 (14MP) Canon G10 cameras were mounted between
the arms (which provides a superior viewing angle for certain parts of the
towel folding procedure). (Other sensors on the robot were not used.) The
workspace consists of two known tables: one contains the initial pile of
towels, and the other is used for folding and stacking the towels. Note
that the PR2 was not designed specifically for this particular task, and no
specialized tool or end-effector design was used.

happen to be picked up, all but one is later dropped back in

the pile automatically following the first corner grasp.

To provide sufficient motion cues for the main corner grasp

point detection algorithm, the robot allows the towel to hang

vertically from its gripper and rotates the towel in place in

view of the high-resolution stereo pair (Figure 2c-e). At most

five attempts of sixteen rotational increments (of 12◦ each)

are made to detect a suitable corner grasp point; each attempt

is preceded by a shake maneuver designed to randomize the

configuration of the towel. A grasp is attempted as soon

as a suitable point that can be reached by a collision-free

path (including collisions with the towel) is detected. For

simplicity, a blind grasping strategy was used, in which the

planned grasp is attempted without additional using visual

feedback to track the detected corner. Consequently, it was

necessary for the towel to be stationary and in a stable

configuration when imaged, which dictated that the towel

be rotated slowly and allowed to settle for several seconds

prior to capturing each frame.

If all five attempts are exhausted, the towel is dropped

back in the pile to allow it to be retried with a different

initial pickup. Any detected corner is permitted for the first

grasp, while for the second grasp (after the towel is already

held from one corner), the bottommost corner is rejected

in order to ensure that the towel is held by two adjacent

corners. A completely missed or insecure grasp is detected

immediately by attempting to pull the towel taut between the

two grippers; other types of mis-grasps are detected during

the untwist and check configuration stage (Fig. 2g-h).

Following a successful grasp of the second corner, a

dynamic maneuver in which the towel is repeatedly pulled

taut is used to bring the towel to a low-energy configuration

that may still be partially twisted but can be corrected

solely by in-place wrist roll motions (Fig. 2g-h). It does not

appear feasible to avoid twisting the towel in the first place,

as that would require accurately estimating the complete

configuration of the towel while it is still hanging (and then

constraining the arm trajectories to ones that leave the towel

untwisted). A local search procedure is used to fully untwist

both the left and right sides separately by maximizing an

objective that is a linear combination of the gripper spread

distance when the towel is pulled taut and the height to which

the towel hangs on the side being corrected (estimated using

the high-resolution stereo pair). The untwisting procedure

also estimates the 3-D size of the towel (and also whether

it is being held by a long side or short side) by fitting a

3-D rectangle to the foreground points; a sufficiently poor

fit even in the optimally untwisted configuration indicates a

mis-grasp, in which case the corner grasping is re-attempted.

For the actual folding, assuming it is held by a short side,

the towel is held taut and pulled across the edge of the table

in order to spread it out (Fig. 2k). The 3-D positions of

the corners of the towel on the table are estimated based

on a combination of foreground-background segmentation,

stereo correspondence, and the (known) planar geometry of

the table. This allows the robot to precisely align the two

corners held in its grippers with the two corners on the table

and then release, producing the first fold (Fig. 2l).5 The towel

is then re-grasped (Fig. 2m), folded a second time (Fig. 2n),

and then finally re-grasped and placed on the stack (Fig. 2o).

In the case that the towel is originally held by a long side,

the table is used to spread out and regrasp the towel in the

short side configuration, from which point folding proceeds

as if the short side had been held originally.

An optimized GPU implementation of a variational algo-

rithm for dense optical flow [20] was used by our imple-

mentation of the proposed grasp point detection algorithm

for both optical flow computation as well as dense stereo

matching.6 As an optimization, the foreground-background

segmentation was used to restrict optical flow computation

to the foreground portion of the image, which was rescaled, if

necessary, to not exceed 2 megapixels (to limit computation

time). Because the dependency structure of the grasp point

detection algorithm is not a simple path, it was executed more

efficiently in a parallel pipelined fashion. A pipeline depth of

4 (meaning at most 4 frames were processed simultaneously)

was used to maximally utilize the NVIDIA GTX 295 GPU

used for the optical flow computation and the Intel Core 2

quad-core 2.5GHz CPU used for all other computation.

5Although the size of the towel has been estimated and is used to
parameterize the folding (specifically the motions involved in pulling the
towel across the table edge), due to the deformable nature of the towel,
visual feedback has been necessary in order to achieve any reasonable result.

6Because this implementation does not compute a confidence measure
along with the optical flow, a confidence measure is derived by comput-
ing the flow in both directions and defining the confidence C(u, v) =
e−0.2d(u,v), where d(u, v) is the round-trip displacement distance by
following the flow forward and then backward at u, v.
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Fig. 2. The state machine model of the procedure: dashed lines indicate failure recovery cases. The images show an actual run.



Background subtraction and mobile base localization were

treated as solved problems, as they were not our research

focus. Specifically, a known solid-color background was

used to simplify foreground-background segmentation, and

a motion-capture system was used for base localization.

V. EXPERIMENTS

After tuning the parameters on a training set of 3 towels7,

we ran 50 trials over a wide variety of previously unseen

towels. In particular, the test set comprised 25 distinct

colors/patterns, 16 distinct materials, and 11 distinct sizes

(with lengths ranging from 32 to 78 cm and widths ranging

from 32 to 48 cm).8 Each of the 25 towels in the test set

was fed to the robot individually by tossing it onto the table

in a random configuration before beginning each test run.

We tested each towel twice (each time in a different random

configuration) for a total of 50 trials. Additionally, to verify

handling of multiple towels at a time, the robot was tested

on a pile of 5 towels (tossed onto the table in a random

configuration).

We also used the data from the 50 trials to directly evaluate

the performance of the grasp point detection algorithm and

compare it with several baseline algorithms. The 1966 high-

resolution stereo image pairs on which the algorithm was run

over the course of these trials were saved (along with the

output of the algorithm) and hand-labeled with the ground-

truth locations of any corner grasp points.9 (Only corners of

the towel visible against the background in the image were

labeled positive.) The final filtering based on stereo depth

information and motion planning feasibility was excluded

from this evaluation. The maximum-cardinality matching

in each image between ground-truth corners and detected

corners, with matches permitted only between points no

more than 150 pixels apart (corresponding to about 3 cm),

determined the true positive detections. Precision and recall

were calculated based on the summed true positives, false

7For the border classification algorithm, a dilation radius of δ = 40
and a classification threshold of t = 1.7 for edges more than 35◦ from
horizontal, and t = 0 otherwise, since horizontal folds are not stable on
a free-hanging towel, were used. For the RANSAC corner detection, the
parameters dinlier = 25, ℓgap = 45, and ℓmin = 300 were used. (Note
that these parameter are relative to an image size of 3312x4416.) Grasps
5 cm diagonally in from the corner tip were used.

8Due to the limited range of motion of the arms and the limited field of
view of the high-resolution cameras, the procedure is limited to towels no
larger than about 78x48 cm; only towels within this range were included
in the test set. Additionally, due to the use of a solid green pattern for
background subtraction, green towels were also excluded from the test set.

9The data collection process, namely actual trial runs of the complete
procedure, was influenced by the proposed grasp point detection algorithm.
In particular, the fact that each corner detection attempt stops (and a grasp is
attempted) as soon as a suitable detection is made negatively biases recall.
This is mitigated, however, by the fact that many detections were excluded
by a later stage of processing, e.g. due to motion planning infeasibility, and
also due to the pipelining used by the detection algorithm, which typically
caused 2 or 3 additional images to be captured after the image in which
the first accepted detection was made. There is an additional bias towards
lower recall due to the fact that towel configurations making detections most
difficult were precisely the ones for which the most samples were collected;
this was mitigated by reweighting the data to give equal total weight to each
trial.

positives, and false negatives in all images. To (approxi-

mately) reflect the low cost of obtaining an additional image

from a different viewpoint and the high cost of recovering

from a mis-grasp, the F0.5-score was selected as a summary

statistic for comparison purposes.10

The only methods that have previously been proposed

specifically for cloth corner grasp point detection are based

on selecting the bottommost point; by definition, such meth-

ods cannot, however, find any suitable grasp point for the

second corner. Instead, therefore, a thresholded and non-

maxima suppressed Harris detector [11] applied to the raw

foreground-background edge map, and also the same detector

applied instead to the thresholded border classification map

(§III-B), were used as two baseline algorithms for evaluat-

ing the performance of the proposed grasp point detection

algorithm.11 The threshold parameter trades off recall for

precision. The sensitivity parameter K and the size B of

the square blocks used in computing the Harris response,

along with the radius R of the circular region used for

non-maxima suppression were selected individually for the

two variants using a grid search to maximize the F0.5-

score (obtained from the optimal threshold) on a 386-image

training subset (approximately 20%) of the labeled data that

was set aside for this purpose. The training subset was not

used for the proposed grasp point detection algorithm; it

was used solely for the Harris detector-based algorithms.

Performance comparisons were made using the testing subset

of the labeled data, which comprised the remaining 1580

images.

VI. RESULTS

A. Grasp Point Detection Performance

The results of an evaluation using the dataset in its entirety,

corresponding to the case of detecting the first corner in

which any corner is acceptable, are shown in Fig. 3. Fig. 4

shows the results of additional evaluation corresponding

to the detection of the second corner, namely excluding

the bottommost corner from both detector output and the

ground-truth labels and restricted to the subset of the data

that was collected during attempts to detect the second

corner. Given the greater importance of precision over recall,

the proposed algorithm significantly outperforms the Harris

detector baselines on both evaluations. As can be seen in

the Harris detector results, the proposed border classification

step substantially improves precision at the cost of only

a modest reduction in recall. Furthermore, in combination

with the border classification, the proposed RANSAC-based

10The traditional F -measure (F1-score) is the harmonic mean of precision

and recall: F1 = 2 precision·recall
precision+recall

. More generally we have Fβ = (1 +

β2) precision·recall
β2

·precision+recall
. The F0.5-score weights precision twice as much

as recall.
11Actually grasping a corner using stereo to select a grasp position and

orientation depends on a precise 2-D localization of the corner in the image,
as produced by the proposed algorithm; the Harris detector produces only
a point. An additional post-processing step would be needed to produce
an estimate of the position and angle of the corner corresponding to the
detected point. However, we evaluate the detector performance solely on
the basis of point detections.
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complete proposed algorithm without the final filtering based on stereo and
motion planning feasibility(§III-D). RANSAC is the RANSAC-based corner
detection applied directly to the foreground-background edge map, thus
excluding the border classification step. BC+Harris is the Harris detector
applied to the border classification map, using the optimized parameters
K = 0.2, B = 250, R = 800. Harris is the Harris detector applied directly
to the foreground-background edge map, using the optimized parameters
K = 0.2, B = 250, R = 600.
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Fig. 4. Detection performance for the second corner only is compared using
the testing subset. BC+Harris used the optimized parameters K = 0.2,
B = 300, R = 600. Harris used the optimized parameters K = 0.2,
B = 300, R = 450.

corner detection provides a substantial improvement over

the Harris detector. The RANSAC-based corner detection

does not outperform the Harris detector when not used in

combination with the border classification, likely due to the

fact that its parameters were tuned only for the combined use

case, whereas the Harris detector was optimized separately

on the training subset for each of the four cases.

B. Complete Procedure

A perfect success rate of 100% was achieved on the 50

end-to-end trials of previously untested towels. A total of 153

corner detection attempts were made over the course of the

50 trials, of which 147 led to a correct detection (there was

one case of no detection) and 124 additionally led to a correct

grasp. On a per-detection-attempt basis, this corresponds to

a detection success rate of 96% and a combined detection

Step Occur. Dur./Occ. Total Dur.

Initial Pickup 1.08 24 26

First grasp point 1.56 187 291

Second grasp point 1.50 348 521

Untwisting 1.30 186 242

Folding 1 397 397

Fig. 5. Running time summary of complete procedure on the 50 trials:
average number of occurrences of each step per trial; average duration per
occurrence of each step; and average total duration of each step per trial.
The time spent actually grasping the detected grasp points, as well as the
time spent on the shake maneuver, is included in the grasp point detection
time, but only accounts for a small fraction of the time.

and grasping success rate of 81%. Although there were some

failures of individual steps, as reflected by these modest but

non-zero failure rates, the overall procedure was designed to

be robust to such failures and indeed successfully recovered

from all failures. The test on the pile of 5 towels was also

completely successful. Videos of our autonomous folding

runs are available at the URL provided in the introduction.

C. Running Time

A per-step breakdown of the running time of the complete

procedure is shown in Fig. 5. The average total duration per

towel (sum of the rightmost column) was 1478 seconds. The

majority of time is spent on grasp point detection. The greater

time spent on the second grasp point detection reflects the

greater scarcity of suitable grasp points due to the exclusion

of the bottommost corner. The speed of the pickup and

folding steps was limited only by the speed at which the

robot could follow the joint and base trajectories (which was

not heavily optimized).

The overall throughput of the grasp detection algorithm

was 1 frame per 13.8 seconds. For the first grasp point, an

average of 6.9 frames were processed per attempt (before a

grasp was attempted); for the second grasp point, an average

of 16.9 frames were processed per attempt. Computationally,

the throughput was primarily limited by the optical flow

calculation: the NVIDIA GTX 295 GPU provided a through-

put of 1 optical flow computation per 5 seconds, and the

processing of each frame requires either one or two optical

flow computations, depending on whether a 2-D grasp point

detection is made.

D. Analysis of Failure Cases

On 28 of the 50 trials, no exceptional conditions occurred,

meaning the robot correctly detected and grasped the first

and second corners and then correctly untwisted and folded

the towel without any intervening failures. On each of

the remaining 22 trials, one or more of several types of

recoverable failure conditions occurred:

Grasp attempts (on properly detected corners) that com-

pletely missed the towel were the most common type of

failure, with 16 occurrences; they are also the least expensive

in terms of added time, as they are detected immediately,

allowing another detection attempt to be performed. These

failures are primarily due to the inability of the blind grasping



strategy to account for the towel potentially being in a

different configuration than when it was imaged (due to it

hanging freely and possibly not settling for long enough

or being in an unstable configuration); this limitation was

exasperated by the use of pipelining to speed up the detec-

tion algorithm, as it results in additional rotations (and an

opposite backward rotation) prior to grasping. (The stereo to

arm calibration, accurate to about 1cm, was not a significant

factor.) Overall, though, the blind grasping strategy proved

to be quite adequate, failing due to lack of visual feedback

on only 11% of grasps.

In 5 cases, the detection algorithm returned a false positive

(typically due to a sharp fold in the cloth). Two of these cases

happened to lead to a missed grasp; the other three cases led

to successful grasps which were later correctly detected as

mis-grasps during the untwisting and checking stage.

In 4 cases, a corner was correctly detected and grasped, but

an additional nearby part of the towel happened to get caught

in the gripper. These cases were later correctly detected as

mis-grasps during the configuration checking stage.

In 3 cases, due to an insecure initial pickup grasp, the

towel slipped out of the gripper (falling back onto the pile)

while detecting the first corner (and then retried).

In 1 case, after correctly grasping the first corner, a suitable

second corner grasp point was not detected, leading to the

towel being dropped and retried.

In 3 cases, the untwisting stage failed to fully untwist the

towel; these cases were subsequently correctly detected by

the configuration checking stage.

In 5 cases, the configuration checking stage incorrectly

classified a correctly grasped towel as being mis-grasped,

leading to an unnecessary retry. These 5 false negatives out of

a total 65 times that the configuration checking was invoked

during the 50 trials correspond to a precision of 92%. Note

that false positives by the configuration checking are not

recoverable, but none occurred.

VII. CONCLUSIONS

We proposed a cloth grasp point detection algorithm

which has been shown to have very high precision and a

very reasonable rate of recall while being highly robust to

variation in material, size, and appearance due to relying

only on geometric cues. The reliability and robustness of

our algorithm enabled for the first time a robot with general

purpose manipulators to reliably and fully-autonomously fold

previously unseen towels, demonstrating success on all 50

out of 50 single-towel trials as well as on a pile of 5 towels.

Although our complete folding procedure was specialized

to towels, the proposed algorithm could likely be useful for

detecting grasp points on many types of clothing.
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