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Abstract— Applications of reinforcement learning for robotic
manipulation often assume an episodic setting. However, con-
trollers trained with reinforcement learning are often situated
in the context of a more complex compound task, where
multiple controllers might be invoked in sequence to accomplish
a higher-level goal. Furthermore, training such controllers
typically requires resetting the environment between episodes,
which is typically handled manually. We describe an approach
for training chains of controllers with reinforcement learning.
This requires taking into account the state distributions induced
by preceding controllers in the chain, as well as automatically
training reset controllers that can reset the task between
episodes. The initial state of each controller is determined by the
controller that precedes it, resulting in a non-stationary learning
problem. We demonstrate that a recently developed method
that optimizes linear-Gaussian controllers under learned local
linear models can tackle this sort of non-stationary problem,
and that training controllers concurrently with a corresponding
reset controller only minimally increases training time. We also
demonstrate this method on a complex tool use task that consists
of seven stages and requires using a toy wrench to screw in
a bolt. This compound task requires grasping and handling
complex contact dynamics. After training, the controllers can
execute the entire task quickly and efficiently. Finally, we show
that this method can be combined with guided policy search to
automatically train nonlinear neural network controllers for a
grasping task with considerable variation in target position.

I. INTRODUCTION

Reinforcement learning holds the promise of enabling
robots to automatically learn large repertoires of motion
skills for interacting with the world. Indeed, recent results
have shown that it can be an effective tool for learning
a range of behaviors, from games such as ball-in-cup and
table tennis [1], to manipulation [2], [3] and robotic locomo-
tion [4]–[7]. However, controllers trained with reinforcement
learning are rarely situated in a vacuum. In complex, real-
world tasks, they might precede and follow other controllers,
and their initial state distributions are determined by the
controllers that precede them. Furthermore, practical appli-
cation of episodic reinforcement learning requires manually
resetting the state of the system between episodes, which is
often done manually or with hand-designed controllers.

In this work, we propose a framework that can train chains
of controllers for performing compound tasks, together with
a set of reset controllers that can reset the system to the
initial state for each stage. When multiple controllers are
trained together in this way, the resulting learning problem
becomes non-stationary, since the initial state distribution of
each controller is determined by the controllers that might
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Fig. 1: PR2 robot performing the wrench task. This task
consists of seven stages.

precede it. While a number of methods could be designed
to handle such non-stationarity, we show that a recently
developed reinforcement learning algorithm based on fitting
local linear models can handle tasks with non-stationary
initial state distribution without any special modification [8].
This approach combines ideas from model-free and model-
based reinforcement learning: the algorithm can handle tasks
with unknown dynamics, but does not attempt to fit a single
global dynamics model, which can be exceedingly difficult
for complex manipulation tasks with contacts. Instead, this
algorithm fits time-varying local linear dynamics around
samples generated from the previous controller, and uses
these linear dynamics to update the control policy using
a variant of iterative LQR [9]. The algorithm can be used
to train simple time-varying linear-Gaussian controllers, and
can be combined with the framework of guided policy search
to train nonlinear neural network controllers to tackle tasks
that require generalization to new situations [8].

First, we experimentally demonstrate that this method can
train reset controllers that automatically reset the system to
the initial state following each episode, while at the same
time training the forward controller that performs the task.
Concurrently learning both forward and reset controllers does
not appreciably increase overall training time, and makes it
substantially easier to apply reinforcement learning to a wide
range of robotic tasks without manual engineering.

Second, we demonstrate that this approach can be used
to train a chain of controllers, with corresponding reset
controllers, for tasks that consists of multiple steps. While
learning the compound task, the robot executes each con-
troller in sequence. The first controller that fails is trained
further, along with its corresponding reset controller, allow-
ing the entire compound task to be learned incrementally.
We demonstrate this capability by training a sequence of



seven forward and reset controllers for a complex task that
consists of picking up a wrench and using it to screw in
a bolt, shown in Figure 1. We also show that our method
can be used to automatically train a neural network grasping
controller that can pick up a toy wrench from a variety of
different positions, with concurrently learned controllers to
reposition the wrench during training. This allows us to train
a complex neural network policy that can generalize to new
object positions with minimal human intervention.

II. RELATED WORK

Policy search methods in robotics have been used to learn
a variety of behaviors, ranging from games such as ball-in-
cup [1], to manipulation [2], [3] and robotic locomotion [4]–
[7]. Policy search methods based on standard reinforcement
learning assumptions, including likelihood ratio methods and
methods based on stochastic optimal control (SOC) [10],
[11], usually assume that the task is stationary, which means
that aspects of the environment such as the dynamics and
the initial state distribution do not change during training.
In this work, we empirically show that a recently developed
reinforcement learning method for training linear-Gaussian
controllers [12] does not require this assumption, which
enables a number of interesting applications.

Our first application is to automatically train reset con-
trollers. Most policy search methods in robotics, particularly
for manipulation tasks, use an episodic finite-horizon formu-
lation [13]. However, such methods assume that the environ-
ment is reset to the initial state by some existing approach,
or simply by hand. By training the reset controller together
with its corresponding forward controller, our method can
make it much more straightforward to apply reinforcement
learning to new tasks with minimal hand-engineering.

Our second application consists of learning compound
tasks that require chaining multiple controllers together,
where the initial state of the next controller depends on
the terminal state of the previous one. Several prior meth-
ods have proposed chaining controllers based on dynamic
movement primitive (DMP) representations [14]–[16], which
lend themselves to efficient learning algorithms, but are
primarily kinematic. The linear-Gaussian controllers trained
by our approach explicitly encode a distribution over actions
(torques) in terms of the robot’s state at each time step,
allowing them to carry out fast, fluent motions with direct
torque control. Previous work has also sought to develop
ways of choosing which controller to invoke based on
sensory input [17] and constructing subgoals for each stage
from demonstrations [18] and system interaction [19]. Our
work is concerned primarily with training the controllers in
the sequence, and is therefore complementary to previous
work that deals with automatically acquiring subgoals and
choosing which controller to invoke. In fact, a complete
and generally applicable learning system might combine our
method with automatic subgoal segmentation, in order to
train complex behaviors with minimal manual intervention.

While time-varying linear-Gaussian controllers can repre-
sent a wide range of different behaviors, they are essentially

trajectory-centric and limited in their ability to generalize to
new situations. To address this limitation, previous work has
proposed to use guided policy search to train a nonlinear
neural network policy from multiple linear-Gaussian con-
trollers trained for different initial states [8]. This nonlinear
policy can then succeed from the initial states of each linear-
Gaussian controller, and can generalize to new states. We
illustrate that our approach makes it even easier to train such
neural network controllers, by automatically training reset
controllers that can reset the environment during training.

III. LEARNING CONTROLLERS UNDER UNKNOWN
DYNAMICS WITH TRAJECTORY OPTIMIZATION

In this section, we review a recent method for training
linear-Gaussian controllers for robotic manipulation with
locally linear models, and briefly summarize how this ap-
proach can be extended using guided policy search to train
complex nonlinear policies, such as large neural networks.
Our implementation follows prior work [8], [12], [20]. As
we will discuss in Sections IV and V, this approach can
extend to the case of non-stationary initial state distributions,
which makes it possible to apply it to train reset controllers
and compound motion skills that require chaining together
multiple motion primitives.

A. Training Linear-Gaussian Controllers

The aim of the algorithm in this section is to control a
dynamical system with states xt and actions ut in order to
minimize the total expected cost over a finite-length episode,
given by Ep[

∑T
t=1 `(xt,ut)], which we abbreviate as

Ep[`(τ)] for convenience, using τ = {x1,u1, . . . ,xT ,uT }
to denote a trajectory. In order to make this learning prob-
lem tractable, the class of controllers is first constrained
to time-varying linear-Gaussian controllers of the form
p(ut|xt) = N (ût + Kt(xt − x̂t),Ct). Such controllers can
be viewed as stabilizing the system around some nominal
trajectory τ̂ = {x̂1, û1, x̂2, û2, . . . , x̂T , ûT }, using the feed-
backs Kt for stabilization. We therefore call them trajectory-
centric controllers. These types of controllers allow for a very
efficient learning algorithm that combines ideas from model-
free and model-based reinforcement learning. This method
does not require a model of the system dynamics to be known
in advance, and does not attempt to fit a global model of the
dynamics, as is standard in model-based reinforcement learn-
ing. Instead, a new time-varying linear-Gaussian model of the
form p(xt+1|xt,ut) = N (fxtxt + futut,Ft) is estimated at
each iteration around the samples drawn from the controller
at the previous iteration. Because this model is time-varying,
it provides considerable flexibility, and because it is local, it
does not need to capture the potentially complex global dy-
namics of the task. Once the dynamics are estimated, a time-
varying linear-Gaussian controller can be optimized under
the estimated dynamics using a variant of linear-quadratic-
Gaussian (LQG) algorithm, which we review below.

In the LQG setting, we use a quadratic expansion of
the cost function `(xt,ut) and a linearization of the dy-
namics to locally improve a trajectory. The linearization is



typically obtained from a known model of the dynamics,
but since the dynamics in our tasks are not known, we
use the fitted dynamics, defined by fxt and fut. We will
use fxut = [fxt fut] to denote the concatenation of these
matrices, and `xut and `xu,xut to denote the first and second
derivatives of the cost around the current nominal trajectory
τ̂ = {x̂1, û1, x̂2, û2, . . . , x̂T , ûT }. In this setting, the Q-
function and value function are quadratic, and are given by

V (xt) =
1

2
xT
t Vx,xtxt + xT

t Vxt + const

Q(xt,ut) =
1

2
[xt ut]Qxu,xut[xt ut]

T + [xt ut]Qxut + const

These functions can be computed by means of the following
recurrence:

Qxu,xut = `xu,xut + fTxutVx,xt+1fxut

Qxut = `xut + fTxutVxt+1

Vx,xt = Qx,xt −QT
u,xtQ

−1
u,utQu,xt

Vxt = Qxt −QT
u,xtQ

−1
u,utQut,

and the new deterministic optimal controller is given by
g(xt) = ût + kt + Kt(xt − x̂t), where Kt = −Q−1u,utQu,xt

and kt = −Q−1u,utQut. A derivation of this control law can
be found in prior work [9].

However, as discussed in prior work [8], simply solving for
the optimal controller under the currently estimated dynamics
and running this controller on the robot generally does not
produce good results, since the estimated linear-Gaussian
dynamics are only accurate in the vicinity of the trajectory
distribution induced by the previous controller. In practice,
such an algorithm rarely makes good progress. Instead, we
need to keep the new controller close to the old one, such
that the resulting distribution over trajectories p(τ) does not
change too drastically. A natural choice for bounding the
amount of change in this distribution is the KL-divergence
DKL(p(τ)‖p̂(τ)) between the new distribution p(τ) and
the old one p̂(τ), resulting in the following constrained
optimization problem:

min
p(τ)∈N (τ)

Ep[`(τ)] s.t. DKL(p(τ)‖p̂(τ)) ≤ ε, (1)

where the trajectory distributions are formed by multiplying
the linear-Gaussian dynamics and the action distributions:
p(τ) = p(x1)

∏T
t=1 p(xt+1|xt,ut)p(ut|xt). Since the dy-

namics of the new and old trajectory distributions are as-
sumed to be the same, the KL-divergence is given by

DKL(p(τ)‖p̂(τ)) =

T∑
t=1

Ep(xt,ut)[log p̂(ut|xt)]−H(p),

and the Lagrangian of the constrained problem in Equa-
tion (1) is given by

Ltraj(p, η) = Ep[`(τ)] + η[DKL(p(τ)‖p̂(τ))− ε] =[∑
t

Ep(xt,ut)[`(xt,ut)−η log p̂(ut|xt)]

]
−ηH(p(τ))−ηε.

The constrained problem in Equation (1) can then be op-
timized with dual gradient descent [21], where we alter-
nate between minimizing the Lagrangian with respect to
the primal variables, which are the parameters of p, and
taking a subgradient step on the Lagrange multiplier η.
The optimization with respect to p can be performed very
efficiently using a variant of the LQG algorithm, by ob-
serving that the Lagrangian is simply the expectation of a
quantity that does not depend on p and an entropy term.
As shown in prior work [22], the optimal linear-Gaussian
controller for an objective that requires minimizing cost and
maximizing the entropy of the controller is simply given by
p(ut|xt) = N (ût + kt + Kt(xt − x̂t), Q

−1
u,ut). It therefore

only remains to transform the Langragian into an objective of
the form

∑T
t=1Ep(xt,ut)[

˜̀(xt,ut)]−H(p), and then we can
use the standard LQG algorithm to obtain the solution under
the modified cost ˜̀(xt,ut). We can derive this modified cost
by dividing the Lagrangian by η, which does not alter the
optimum with respect to the primal variables. We then obtain
˜̀(xt,ut) = 1

η `(xt,ut)− log p̂(ut|xt).
In summary, each iteration of this algorithm consists of

generating samples by running the controller p̂(ut|xt), fitting
time-varying linear-Gaussian dynamics to these samples,
and solving the constrained optimization in Equation (1)
under these dynamics. This constrained optimization in turn
is performed with dual gradient descent, which alternates
between solving the LQG problem with a modified cost
˜̀(xt,ut) = 1

η `(xt,ut)− log p̂(ut|xt) and incrementing the
Lagrange multiplier η by its subgradient DKL(p(τ)‖p̂(τ))−ε.

Our implementation also includes a number of improve-
ments detailed in previous work [8], including the use of a
Gaussian mixture model (GMM) prior during the dynamics
fitting and an adaptive step size adjustment rule to control
ε. The GMM prior serves to reduce the sample complexity
of the linear regression procedure for fitting the dynamics,
by exploiting the fact that the dynamics have strong tem-
poral correlations. A single GMM is fitted to all samples
(xt,ut,xt+1), and the clusters that best explain the samples
at a particular time step act as the prior for fitting the
dynamics at that step. This allows us to use many fewer
samples per iteration than there are dimensions in the system.
The step size ε is adjusted based on the degree to which
the cost predicted under the old dynamics agrees with the
estimated cost under the new dynamics, under the assumption
that the step size should be reduced when this disagreement
is high. Both the GMM prior and the step size adjustment
method are described in detail in prior work [8].

B. Training Nonlinear Policies

While the linear-Gaussian controllers described in the
preceding section can execute simple tasks with modest
amounts of variation, many tasks require policies that can
handle a variety of initial states. For example, a policy for
picking up an object might be required to move the arm
into a range of different positions for a successful grasp,
depending on the object’s pose. To handle such variation,
we can train multiple linear-Gaussian controllers for different



Algorithm 1 Guided policy search with BADMM [20]

1: for iteration k = 1 to K do
2: Generate samples {τ ji } from each linear-Gaussian

controller pi(ut|xt) by running it on the robot
3: Train nonlinear neural network policy πθ(ut|xt) to

match the sampled trajectories {τ ji }
4: Estimate dynamics pi(xt+1|xt,ut) for each linear-

Gaussian controller pi(ut|xt)
5: Modify cost ¯̀(xt,ut) = `(ut,xt) + φ(xt,ut, θ) to

penalize deviation from πθ
6: Update pi(ut|xt) using the LQG-like method with

augmented cost ¯̀(xt,ut)
7: end for
8: return optimized policy parameters θ

instances of the task, such as different target object positions,
and combine them into a single nonlinear neural network
policy that can generalize to new states. This is done using
the framework of guided policy search [8], [20]. In particular,
we use the BADMM-based guided policy search algorithm
discussed by Levine et al. [20].

A summary of this method is provided in Algorithm 1,
although a full derivation is outside the scope of the paper.
The algorithm has three principle differences from the linear-
Gaussian training procedure in the previous section. First, it
requires samples from multiple linear-Gaussian controllers
at each iteration. Second, the samples are used to not only
estimate the dynamics of each linear-Gaussian controller,
but are also used as training data to train the nonlinear
neural network policy with supervised learning. Third, the
cost function for the linear Gaussian controllers is modified
to include a term that penalizes deviation from the behavior
of the latest neural network policy, which causes the linear-
Gaussian controllers to converge to the same behavior as
the neural network policy, ensuring that the network exhibits
good long-horizon performance. For details on each of these
components, we refer the reader to previous work [20].

Prior applications of guided policy search considered each
linear-Gaussian controller in isolation, usually trained for
a different instance of the task (e.g. different positions of
a target object for manipulation). In this work, we instead
chain these controllers into a continuous execution stream,
and combine a subset of the controllers into a neural network
that can generalize effectively. For example, in Section VI-C,
we train a neural network for grasping in multiple positions,
together with reset controllers that retract the arm. When
training compound controllers, we may not be able to collect
new samples from each controller at each iteration until the
backward controllers have learned to reset successfully. In
this case, we only update the neural network once samples
from all controllers are available. Aside from this, our
implementation of guided policy search follows prior work.

IV. RESET CONTROLLERS

In the previous section, we reviewed an algorithm for
optimizing controllers for episodic tasks. These controllers

Algorithm 2 Training with reset controllers

1: for iteration k = 1 to K do
2: for samples i = 1 to N do
3: Run pf (ut|xt) on the robot to generate sample τ if
4: Run pr(ut|xt) on the robot to generate sample τ ir
5: end for
6: Use {τ if} to update pf with cost `(xt,ut)
7: Use {τ ir} to update pr with reset cost `r(xt,ut)
8: end for
9: return forward controller pf and reset controller pr

are trained using samples generated by running the current
controller on the robot. Each such episode requires resetting
the robot into the task’s initial state. For some behaviors, this
reset is trivial, and simply requires moving the arm into a par-
ticular configuration, which can be accomplished with simple
PD control. However, for many manipulation tasks, resetting
the state of the system can be more complex, and additional
manual engineering is often required to perform the reset
automatically. In order to make the learning algorithm in the
preceding section general and easy to apply to new tasks, we
can learn a separate controller to perform the reset procedure.
However, the behavior of this reset controller depends closely
on the corresponding forward controller, since the terminal
state distribution of the forward controller serves as the initial
state distribution for the reset controller, and vice versa.

Learning the forward and reset controllers together consti-
tutes a non-stationary problem, since the initial state distri-
bution of each of the controllers changes during learning. As
we experimentally demonstrate in Section VI, the algorithm
in the preceding section can learn such reset controllers with
minimal loss in performance compared to a forward con-
troller trained with manually designed reset behavior. This
is because it does not assume that the problem is stationary.
Instead, a new controller is optimized at each iteration, using
an efficient LQG-based algorithm. The only modification that
is required compared to the standard approach is to estimate
a new Gaussian initial state distribution in order to accurately
evaluate the expected cost, which is done simply by fitting
a Gaussian to the initial states in the samples.

The resulting algorithm has a simple structure presented in
Algorithm 2. For each sample from the forward controller pf ,
a corresponding sample is generated from the reset controller
pr. If the reset controller is successful, this also has the
desirable property of placing the robot into the correct initial
state. However, even if success is not attained, the for-
ward controller is executed from whichever state is actually
reached by the reset controller. Both controllers are updated
(separately) once the required number of samples has been
gathered. The forward controller is updated to improve its
performance with respect to the task cost `(xt,ut), while
the reset controller is updated with respect to a reset cost
`r(xt,ut), which consists of a quadratic penalty for the
distance between the state xt and the desired reset state,
as well as a quadratic actuation penalty on ut.



The reset controller makes it straightforward to train
linear-Gaussian controllers for a variety of tasks without
manually designing a reset procedure. However, we can take
the idea of training multiple controllers further and train
groups of forward and reset controllers for complex tasks
with multiple steps, as described in the following section.

V. COMPOUND CONTROLLERS

Linear-Gaussian controllers are well suited for represent-
ing individual motion primitives [8], [23]. However, many
real-world tasks consist of multiple steps, which must be
executed sequentially. Learning a single linear-Gaussian con-
troller for such a task would be difficult and highly prone
to local optima. However, if we are provided with a set
of intermediate subgoals, we can optimize separate linear-
Gaussian controllers for reaching each subgoal, and even
combine some of them into a nonlinear neural network policy
that can generalize to new situations. The challenge with this
approach is that the behavior of the preceding controller will
influence the initial state of the next one, again resulting in
a non-stationary learning problem.

We will denote the forward controllers for each stage in
such a compound task as pf1 , pf2 , . . . , pfM . Each forward
controller is associated with a corresponding reset controller
pr1 , pr2 , . . . , prM , which aims to reach the target of the
preceding forward controller or, in the case of pr1 , the
initial state. The cost for each forward controller is assumed
to be provided. Often this cost will require the robot to
position its end-effector (or an object held in the end-effector)
at a specific position. This does not fully determine the
configuration of the robot, and the target is not always
reached, so the task remains non-stationary. Some of the
controllers might also be used to train a neural network
policy πθj , as discussed later in this section.

The full set of forward and reset controllers is trained
incrementally, as shown in Algorithm 3. We generate samples
using a simple schedule: the forward controllers are executed
in sequence until one of them fails, at which point the
corresponding reset controller is executed, and the forward
controller attempts to run again. When all forward controllers
succeed, the process is reversed and the reset controllers
are executed in sequence. Success and failure are defined
manually. In our experiments, success always depends on
the position of the end-effector, which must be within a
threshold distance of the target. Reset controllers are assumed
to always succeed during the reset pass, since we found that
they were usually successful by the time the corresponding
forward controller learned the task. However, it would also be
straightforward to add a success test for the reset controller
based on a distance threshold, and invoke the corresponding
forward controller in the case of failure.

The pseudocode in Algorithm 3 illustrates this procedure
with a loop that repeats until each controller has been
trained for at least K iterations, where each iteration requires
N samples. For each invocation of the loop, we execute
either the current forward controller, or the current backward
controller, depending on whether we are going forward or

Algorithm 3 Training compound controllers

1: K is the desired number of iterations per controller
2: N is the desired number of samples per iteration
3: Set: kj = 0, ifj = 0, irj = 0, s = 1, forward = true
4: while minj kj < K do
5: if forward = true then
6: Run pfs(ut|xt) to get sample τ ifs

fs
, increment ifs

7: if ifs = N then
8: Update pfs using {τ ifs

fs
} with cost `s(xt,ut)

9: if pfs is used for neural network πθj and samples
from all controllers for πθj available then

10: Update πθj with latest samples (Alg 1 line 3)
11: Update `s(xt,ut) policy term (Alg 1 line 5)
12: end if
13: Reset ifs to 0, increment iteration ks by one
14: end if
15: if the last sample succeeded then
16: if s = M , set forward← false else increment s
17: else
18: Run prs(ut|xt) to get sample τ irsrs , increment irs
19: if irs = N then
20: Update prs using {τ irsrs } with cost `rs(xt,ut)
21: Reset irs to 0
22: end if
23: end if
24: else
25: Run prs(ut|xt) to get sample τ irsrs , increment irs
26: if irs = N then
27: Update prs using {τ irsrs } with cost `rs(xt,ut)
28: Reset irs to 0
29: end if
30: if s = 1, set forward← true else decrement s
31: end if
32: end while
33: return Forward controllers pfj , reset controllers prj ,

neural network policies πθj

backward. If the new sample raises the sample count for this
controller to N , we take one training iteration. In either case,
if the sample succeeds, we move on to the next controller in
the sequence. Otherwise we execute the backward controller
so that the forward controller can try this step again.

If a particular forward controller is also included in the
training set for a neural network policy πθj , we update this
neural network policy at the same time as its corresponding
controllers, using the latest samples from each controller that
contributes to the neural network. After this, the cost of each
of these controllers is updated to include the policy deviation
term described on line 5 of Algorithm 1 for the latest policy
πθj . In the next section, we describe an example task where
such a neural network policy is trained in the context of other
controllers to provide robustness to variation in the positions
of objects in a manipulation task.



VI. EXPERIMENTAL RESULTS

In this section, we discuss the experiments we performed
to evaluate our method. We first aim to determine whether
learning the reset controller simultaneously with the corre-
sponding forward controller decreases performance or in-
creases the required number of samples beyond what would
be needed with a manually specified reset procedure. We then
proceed to train a chain of controllers for a complex seven-
stage task, in order to determine whether such elaborate be-
haviors can effectively be tackled with a sequence of linear-
Gaussian controllers that are trained incrementally. Finally,
we train a nonlinear neural network policy for a grasping
task by using five controllers trained to grasp at different
positions, along with three other supporting controllers to
automate the learning process.

All experiments were conducted on the PR2 robot shown
in Figure 1. All controllers were intialized by using LQR
to stabilize around the initial state of the task, using an
initial double-integrator guess of the dynamics, with a sub-
stantial amount of Gaussian noise added for exploration.
All controllers were therefore initially identical, starting out
with random motions that were roughly centered on the
initial pose. Note that this initial pose was the same for all
controllers in the compound controller task. All of the tasks
and subtasks required placing the end-effector in a particular
pose and minimizing torque, with the end-effector pose fully
defined by the position of three points in the frame of the
wrist. We therefore follow previous work [8] and use a cost
function of the following form:

`(xt,ut) = wd(xt)
2 + v log(d(xt)

2 + α) + wu‖ut‖2G,

where w, v, and wu are constant weights, G is a diagonal
matrix of gains that penalized torques more strongly at
smaller joints such as the wrist, compared to larger joints
such as the shoulder, and d(xt) gives the average distance
between the three points in the frame of the wrist and
their target positions. The second log term encourages the
controller to match the target position with high precision.
More details about the motivation for this cost function are
provided in previous work [8]. At each iteration of our
LQR-based learning algorithm, we used between 3 and 5
sample trajectories, with an adaptive sample size adjustment
rule described in prior work used to adaptively increase
or decrease the sample count based on the quality of the
dynamics estimate [8]. Video recordings of each of the
experiments in this section can be found on the project
website: http://rll.berkeley.edu/reset_controller/.

A. Reset Controller Experiment

In order to evaluate our algorithm with automatically
learned reset controllers, we set up a Lego block task that
required the robot to stack a large Lego block onto another
block at a specific location. Previous work showed that
this task can be performed successfully with a manually
designed reset controller [8]. The results in Figure 2 show
that learning the reset controller simultaneously with the
forward controller does not noticeably affect the learning
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Fig. 2: Learning curves for the Lego block task with a
manually designed reset controller, as well as with an
automatically learned reset controller (left), along with an
illustration of the Lego block stacking task (right). Learning
the reset controller together with the forward controller does
not adversely affect the rate at which the task is learned.

speed for this task. However, as shown in the supplementary
video, the behavior of the learning process appears very
different: since the initial reset controller is simply random,
the robot begins by continuously moving its arm through
random motions, until a distinct forward and reset phase
emerge. The final learned reset controller is fast and torque-
efficient, pulling the lego block off of the block beneath it
and quickly setting the arm into the initial state.

B. Compound Controller Experiment

To evaluate our method on a compound multi-step task,
we trained a sequence of forward and reset controllers for a
task that requires using a toy wrench to screw in a bolt. This
task consists of 7 steps, which include grasping the wrench
and making one full turn. Illustrations of each step are shown
in Figure 3. During training, the entire sequence of forward
controllers was able to succeed after 98 iterations (with 5
episode per iteration), and was able to succeed consistently
after 147 iterations. A more detailed breakdown of the
number iterations for the forward and backward controllers at
each stage is provided in Table I. Note that we refer to each
execution of a controller (forward or reset) as an “episode.”
Unlike in the standard reinforcement learning setting, one
episode is not one execution of the task: since the task
consists of 7 steps, it requires 7 episodes to execute the
task end-to-end, in addition to the reset controllers. Since
the training is incremental, we do not need to execute the
entire sequence of controllers prior to each learning iteration.

stage (a) (b) (c) (d) (e) (f) (g)

until first success
forward 10 5 6 6 9 6 7

backward 10 5 6 6 9 6 7

until consistently
forward 16 13 9 10 13 9 9

successful backward 16 13 7 8 11 6 7

TABLE I: Number of iterations required for each stage in
the wrench task. Each iteration required 5 episodes.

After the full sequence of controllers is trained, the robot
can screw in the bolt for any number of turns by repeating
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(a) (b) (c) (d) (e) (f) (g)

Fig. 3: Illustration of the compound wrench task. The wrench is grasped (a), then placed in a rest position (b), then positioned
near the bolt (c) and then on the bolt (d), and then turned to rotate the bolt about 60 degrees (e). The wrench is then withdrawn
(f) and placed back in the rest position (g), at which point it is ready for another turn. By repeating steps (c) through (f),
the robot can turn the bolt repeatedly, screwing it into the bench. The additional approach step (c) was added to ensure that
the wrench is positioned carefully, as it was prone to rotate in the gripper if it struck the bench or the bolt too quickly.

steps (c) through (g) in a loop, and can execute the reset
controllers to put the wrench back on the table. Videos of
this task are included on the project website.1.

The trained controller sequence was tested on 10 trials,
each of which required grasping the wrench, tightening the
bolt for six turns, and placing the wrench back on the table.
The controllers were completely successful on 8 of the 10
trials, indicating a high degree of reliability. On one trial,
the bolt was turned three times, but the fourth turn failed
when the wrench struck the bolt and rotated in the robot’s
gripper. One trial failed during the first turn, again because
the wrench rotated in the robot’s gripper. Since the method
does not currently measure the orientation of the wrench after
it has been grasped, the controllers had no way to detect this
failure. However, if the problem was detected, it could have
been corrected by running the reset controllers to place the
wrench back on the table and then picking it back up again.
Detecting such failures is a promising direction for future
work, and would improve the robustness of our method.

C. Compound Controller with Neural Network Policy

In the last experiment, we evaluated the ability of our
method to automate the training of nonlinear neural network
policies that can generalize over variation in the task. The
goal was to grasp a toy wrench from a variety of different
positions. The grasping was performed by executing two
forward controllers: first a single forward controller moved
the arm over the table, and then one of five second-stage
forward controllers was executed to move the gripper onto
the wrench. Each of these five second-stage controllers
was trained to place the gripper at a different position.
The wrench was localized by using a Kinect-based object
detector, and the controller trained for the nearest position
was chosen for the second stage. The position of the target
was included in the state of the controller, so each of the
five controllers could tolerate small deviations in the position
of the wrench. However, no single controller could grasp
the wrench at all positions. The five second-stage forward
controllers shared a single reset controller. Together with the
reset for the first stage, the task consisted of eight controllers
(six forward and two reset). The five grasping controllers
were used to train a single neural network policy with two
hidden layers of 40 units each, using soft rectifying nonlin-
earities as described in previous work [8]. After training, this

1See http://rll.berkeley.edu/reset_controller/

Fig. 4: Illustration of the testing setup for the wrench
grasping task. The inner blue rectangle indicates the region
in which the neural network policy was trained, and the
other rectangles are larger by 5 cm and 10 cm on each side,
respectively. Note that not all points in the outermost ring
are within the workspace of the robot.

policy was able to grasp the wrench at any position in the
training region, and could also extrapolate to a substantially
larger region around the training area.

Figure 4 shows the test setup for the trained neural network
policy. The inner rectangle indicates the region in which the
network was trained, the middle rectangle is larger by about
5 cm on each side, and the largest one is larger by about
10 cm on each side. Table II shows the success rate of the
neural network for grasping the wrench at various distances.
Although the network was trained in a relatively small area,
it was able to generalize to a substantially larger region.

distance training region +5 cm +10 cm
success rate: first attempt 20/20 20/20 16/20
success rate: five attempts 20/20 20/20 17/20

TABLE II: Success rate of the neural network grasping policy
at various distances from the center of the training region.
The first row shows the success rate on the first attempt,
while the second shows the success rate when the robot was
allowed to attempt to grasp five times for each test position,
using the reset controllers to reset in the case of failure.

This experiment illustrates one of the advantages of reset
controllers for more complex tasks. During training, the
combination of forward and reset controllers was able to
practice grasping the wrench, withdraw the arm, and place
the wrench back on the table at new positions, allowing the
set of forward and reset controllers to train the neural net-
work completely autonomously. The resulting neural network
policy was then able to succeed at the task even when the
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position of the wrench was altered substantially, indicating
robustness to task variability.

VII. DISCUSSION AND FUTURE WORK

In this paper, we proposed an approach for training chains
of controllers for performing compound tasks with per-stage
subgoals, together with reset controllers that can reset the
system to the initial state of each controller during training.
Learning is accomplished using a recently proposed algo-
rithm for training linear-Gaussian controllers with local time-
varying linear dynamics, which we show can handle non-
stationary initial state distributions. By training individual
controllers in the context of a compound task, each controller
can adapt to the controllers around it. Furthermore, automatic
training of reset controllers makes it possible to easily deploy
this method for a variety of tasks without manually crafting
a reset procedure for each one, increasing the applicability
of reinforcement learning to robotic control problems. In
the case of compound tasks, the ability to also train reset
controllers for each stage in the task makes the process
largely automatic, and provides a repertoire of controllers
that can be recombined at test time in a different order, and
even combined into a single nonlinear neural network policy
that can generalize to variation in the task.

Although our experimental results demonstrate that our
method can handle a number of challenging robotic ma-
nipulation tasks, it has a number of limitations. First, the
reset controllers can only be trained for systems that are
practical to reset automatically using the state-space provided
to the algorithm. For example, the state-space for the wrench
and bolt task does not include the positions of objects in
the environment. Therefore, if the robot were to drop the
wrench in this task, the reset controller would not learn
to retrieve it. In the neural network grasping experiment,
we explicitly provide the wrench position to the policy by
using a Kinect-based object detector, but this requires us
to explicitly enumerate the relevant objects in the scene.
Augmenting the state by using vision, perhaps by drawing
on ideas presenting on recent work training deep visuomotor
policies [20], could allow our method to extend to more
complex tasks, but in general there are many tasks that may
simply be too difficult for a robot to reset automatically.

Another limitation is that, although the forward controllers
are aware of the initial state induced by the preceding
forward controller, they do not attempt to optimize for the
performance of the forward controller that follows them. This
type of information could be fed to the forward controllers
by including the value function from the first time step of the
next controller into the terminal cost at the last step of the
previous one, since the value function is already computed
as part of the LQG backward pass. A further extension
of this method might involve tasks with more complex
branching structure. Our grasping task already involves a
discrete decision point in deciding which forward grasping
controller to invoke based on the position of the wrench, and
this idea can be generalized to produce a tree of controllers
for complex tasks with many decision points.
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