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Abstract—We present a new optimization-based approach for
robotic motion planning among obstacles. Like CHOMP, our
algorithm can be used to find collision-free trajectories from
naı̈ve, straight-line initializations that might be in collision. At the
core of our approach are (i) A sequential convex optimization pro-
cedure, which penalizes collisions with a hinge loss and increases
the penalty coefficients in an outer loop as necessary. (ii) An
efficient formulation of the no-collisions constraint that directly
considers continuous-time safety Our algorithm is implemented
in a software package called TrajOpt.

We report results from a series of experiments comparing
TrajOpt with CHOMP and randomized planners from OMPL,
with regard to planning time and path quality. We consider
motion planning for 7 DOF robot arms, 18 DOF full-body
robots, statically stable walking motion for the 34 DOF Atlas
humanoid robot, and physical experiments with the 18 DOF PR2.
We also apply TrajOpt to plan curvature-constrained steerable
needle trajectories in the SE(3) configuration space and multiple
non-intersecting curved channels within 3D-printed implants for
intracavitary brachytherapy. Details, videos, and source code is
freely available at http://rll.berkeley.edu/trajopt/ijrr.

I. INTRODUCTION

The increasing complexity of robots and the environments
that they operate in has spurred the need for high-dimensional
motion planning. Consider, for instance, a PR2 personal robot
operating in a cluttered household environment or an Atlas
humanoid robot performing navigation and manipulation tasks
in an unstructured environment. Efficient motion planning is
important to enable these high DOF robots to perform tasks,
subject to motion constraints while avoiding collisions with
obstacles in the environment. Processing time is especially
important where re-planning is necessary.

Sampling-based motion planners [21, 25] are very effec-
tive and offer probabilistic completeness guarantees. How-
ever, these planners often require a post-processing step to
smooth and shorten the computed trajectories. Furthermore,
considerable computational effort is expended in sampling and
connecting samples in portions of the configuration space that
might not be relevant to the task. Optimal planners such as
RRT* [20] and discretization-based approaches [29, 28] are
very promising but are currently computationally inefficient
for solving high-dimensional motion planning problems.

Trajectory optimization is fundamental in optimal control
where the objective is to solve for a trajectory encoded as
a sequence of states and controls that optimizes a given
objective subject to constraints [1]. Optimization plays two
important roles in robot motion planning. First, it can be
used to smooth and shorten trajectories computed by other
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Fig. 1. TrajOpt applied to several motion planning scenarios: (a) planning
an arm trajectory for the PR2 in simulation, (b) PR2 opening a door with a
full-body motion, (c) industrial robot picking boxes, subject to an orientation
constraint on the end effector, (d) humanoid robot model (DRC/Atlas) ducking
underneath an obstacle while obeying static stability constraints, (e) multiple
bevel-tip flexible needles inserted through the perineum to reach targets deep
within the prostate following high-quality constant curvature trajectories, and
(f) optimized layout for bounded curvature channels within 3D-printed vaginal
implants for delivering radiation to OB/GYN tumors [14].

planning methods such as sampling-based planners. Second,
it can be used to compute locally optimal, collision-free
trajectories from scratch starting from naı̈ve (straight-line)
trajectory initializations that might collide with obstacles.

Even though trajectory optimization has been successfully
used for optimal control in a number of domains, it has tradi-
tionally not been used for robot motion planning because the
presence of obstacles in the environment and other constraints
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requires solving a non-convex, constrained optimization prob-
lem. However, CHOMP (Covariant Hamiltonian Optimization
for Motion Planning) [41, 61] revived interest in trajectory
optimization methods by demonstrating the effectiveness on
several robotic platforms including the HERB mobile manip-
ulation platform, the LittleDog quadruped, and the PR2 robot.
CHOMP has the following key features: (1) formulation of
trajectory costs that are invariant to the time parameterization
of the trajectory, (2) using pre-computed signed distance fields
for collision checking, and (3) using pre-conditioned gradient
descent for numerical optimization.

Our approach uses optimization in the same spirit as
CHOMP, with the following key differences: (1) the numerical
optimization method used, and (2) the method of checking for
collisions and penalizing them. We use sequential convex opti-
mization, which involves solving a series of convex optimiza-
tion problems that approximate the cost and constraints of the
original problem. The ability to add new constraints and costs
to the optimization problem allows our approach to tackle a
larger range of motion planning problems, including planning
for underactuated, nonholonomic systems. For collisions, we
use signed distances using convex-convex collision detection,
and safety of a trajectory between time steps i.e., continuous-
time safety, is taken into account by considering the swept-
out volume of the robot between time steps. This formulation
has little computational overhead in collision checking and
allows us to use a sparsely sampled trajectory. Our method
for handling collisions yields a polyhedral approximation of
the free part of configuration space, which is directly incor-
porated into the convex optimization problem that is solved at
each optimization iteration. This precludes the need for pre-
computation of signed distance fields and is computationally
efficient in practice.

We performed a quantitative comparison between TrajOpt
and several implementations of motion planning algorithms,
including sampling based planners from OMPL [47], as well
as a recent implementation of CHOMP [61]. Overall, our
experimental results indicate that TrajOpt was computationally
faster than the alternatives on the considered benchmark
(around 100 − 200 ms on arm-planning problems and solves
full body 18 DOF planning problems for the PR2 robot in
under a second on an Intel i7 3.5 GHz CPU), and solved
a larger fraction of the problems given a specified time
limit. We also applied TrajOpt to high-DOF motion problems,
including physical experiments with the PR2 robot where we
simultaneously need to plan for two arms along with the base
and torso (Fig. 1(b)), and for planning foot placements with
28 DOF (+ 6 DOF pose) of the Atlas humanoid robot as it
maintains static stability and avoids collisions (Fig. 1(d)).

In this work, in addition to providing a revised and extended
version of our work [43], (i) we describe an extension to
the algorithm described in the RSS paper to plan trajectories
in SE(3), and (ii) we provide a discussion on cases where
trajectory optimization fails to find a feasible solution. Re-
garding (i), we consider the problem of planning curvature-
constrained trajectories in 3D environments. This involves

trajectory optimization over manifolds such as the SE(3)
Lie group, instead of just vector spaces of the form Rn.
We accomplish this by iteratively optimizing over increments
to the trajectory, defined in terms of the corresponding Lie
algebra — se(3) in our case [2]. We applied this extension
of TrajOpt to two real-world clinical applications. First, we
considered the problem of planning collision-free, constant
curvature trajectories that avoid obstacles in the environment
and optimize clinically relevant metrics for flexible, bevel-tip
medical needles [55, 42] (Fig. 1(e)). Our second application
considers the problem of planning multiple, mutually collision-
free, curvature-constrained channels within 3-D printed im-
plants [14] for intracavitary brachytherapy (HDR-BT).

II. RELATED WORK

Trajectory optimization: Khatib proposed the use of poten-
tial fields for avoiding obstacles, including dynamic obstacles
[22]. Warren [54] used a global potential field to push the
robot away from configuration space obstacles, starting with
a trajectory that was in collision. Quinlan and Khatib [40]
locally approximated the free part of configuration space as
a union of spheres around the current trajectory as part of a
local optimization that tries to shorten the trajectory. Brock
and Khatib [3] improved on this idea, enabling trajectory
optimization for a robot in 3D, by using the Jacobian to
map distances from task space into configuration space. These
approaches locally approximate the free space using a union
of spheres, which is a overly conservative approximation and
may not find feasible trajectories even if they exist.

While the motivation for the presented work is very similar
to the motivation behind CHOMP [41, 61, 8], which is most
similar in terms of prior art, our algorithm differs fundamen-
tally in the following two ways:

1) Distance fields versus convex-convex collision checking:
CHOMP uses the Euclidean distance transform—a precom-
puted function on a voxel grid that specifies the distance
to the nearest obstacle, or the distance out of an obstacle.
Typically each link of the robot is approximated as a union of
spheres, since the distance between a sphere and an obstacle
can be bounded based on the distance field. The advantage
of distance fields is that checking a link for collision against
the environment requires constant time and does not depend
on the complexity of the environment. On the other hand,
spheres and distance fields are arguably not very well suited
to situations where one needs to accurately model geometry,
which is why collision-detection methods based on meshes and
convex primitives are more prevalent in applications like real-
time physics simulation [7] for speed and accuracy. Whereas
convex-convex collision detection takes two colliding shapes
and computes the minimal translation to get them out of
collision, the distance field (and its gradient) merely computes
how to get each robot point (or sphere) out of collision;
however, two points may disagree on which way to go. Thus
convex-convex collision detection arguably provides a better
local approximation of configuration space, allowing us to
formulate a better shaped objective.
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The CHOMP objective is designed to be invariant to
reparametrization of the trajectory. This invariance property
makes the objective better shaped, helping the gradient pull
the trajectory out of an obstacle instead of encouraging it
to jump through the obstacle faster. Our method of collision
checking against the swept-out robot shape achieves this result
in a completely different way.

2) Projected gradient descent versus SQP: CHOMP uses
(preconditioned) projected gradient descent, i.e., it takes steps
x← Proj(x−A−1∇f(x)), whereas our method uses sequen-
tial quadratic programming (SQP), which constructs a locally
quadratic approximation of the objective and locally linearizes
constraints. Taking a projected gradient step is cheaper than
solving a QP. However, an advantage of sequential quadratic
programming is that it can handle infeasible initializations
and other constraints on the motion using penalties and merit
functions, as described in Sec. III. We note that popular non-
convex optimization solvers such as KNITRO and SNOPT
also use an SQP variant. Another advantage of using SQP is
that there is additional flexibility in adding other cost terms to
the objective and constraints, which allows TrajOpt to tackle
a larger range of planning problems, including planning for
underactuated, nonholonomic systems.

Other recent work in robotics uses sequential quadratic
programming for trajectory optimization and incorporates col-
lision avoidance as constraints, in a similar way to this work.
Lampariello et al. [24] incorporate signed distances between
polytopes as inequality constraints in an optimal control prob-
lem. Werner et al. [56] use sequential quadratic programming
to optimize walking trajectories, also incorporating obstacle
avoidance as hard constraints, along with stability constraints.
However, these methods have not considered continuous-time
collision checking or dealt with infeasible trajectory initial-
izations that start deeply in collision. Finally, there recently
has been considerable progress in trajectory optimization for
dynamical systems [32, 26, 39, 51, 12]. These approaches have
obtained promising results but rely on a simplified, though
conservative, representation of the robot geometry (e.g., union
of spheres) to obtain solutions to planning problems.

Trajectory smoothing: Sampling-based motion planners
can sometimes generate non-smooth trajectories that may
contain unnecessary turns [25]. Many techniques have been
proposed in the literature to generate smooth paths. Shortcut-
based methods [17, 19, 36] replace non-smooth portions of
a trajectory shorter linear or curved segments (e.g., parabolic
arcs, Bézier curves). These methods tend to be fast and simple,
and can produce high quality paths in many cases. However,
they may not provide enough flexibility in terms of generating
collision-free smooth trajectories in the presence of obstacles.
TrajOpt and other optimization approaches such as CHOMP
[41, 61] can be used for trajectory smoothing in such cases.

3D curvature-constrained planning: This finds applica-
tions in a wide variety of domains, including motion planning
for flexible, bevel-tip medical needles [55, 42], planning
multiple curvature-constrained channels in 3D printed implants
for brachytherapy dose delivery [14] or channels for cooling

turbine blades [16], and path planning for unmanned aerial
vehicles (UAVs) [60, 45]. Computing collision-free, curvature-
constrained trajectories is challenging in 3D environments
because it requires planning in the SE(3) configuration space
consisting of the 6D pose (position and orientation).

Duindam et al. proposed a fast, optimal planner based
on inverse kinematics in 3D environments without obstacles
[10]. Xu et al. [57, 58] used rapidly-exploring random trees
(RRT) [25] which offers a probabilistically-complete, but
computationally expensive, algorithm to search for collision-
free trajectories. Duindam et al. [9] formulated planning for
steerable needles as a non-convex optimization problem, which
computes collision-free solutions in a few seconds but collision
avoidance is treated as a cost and not as a hard constraint.
Patil et al. [37] proposed a fast RRT planner which uses
duty-cycling spinning of the needle during insertion [11] to
move the needle along bounded curvature trajectories, which
can cause excessive tissue damage [11]. This approach was
also used for designing bounded curvature channels within
implants [14] but the issue of optimality was not addressed.
Fast trajectory correction methods have been proposed to
compensate for uncertainty during insertion [44, 38] but it is
not clear if they can be used to plan trajectories from scratch.

Extensions to planning curvature-constrained trajectories in
3D have been proposed for unmanned aerial vehicles (UAVs)
in environments without obstacles [48, 59, 45] and with
obstacles [18, 60]. These methods are specialized for bounded
curvature trajectory planning and have not considered planning
of constant curvature trajectories in 3D environments.

While specialized planners have been proposed for under-
actuated, nonholonomic systems, TrajOpt can be generalized
to this case (in our case, the SE(3) configuration space) by
considering optimization over increments.

III. BACKGROUND: SEQUENTIAL CONVEX OPTIMIZATION

Robotic motion planning problems can be formulated as
non-convex optimization problems, i.e., minimize an objective
subject to inequality and equality constraints:

minimize f(x) (1a)
subject to (1b)
gi(x) ≤ 0, i = 1, 2, . . . , nineq (1c)
hi(x) = 0, i = 1, 2, . . . , neq (1d)

where f, gi, hi, are scalar functions.
In kinematic motion planning problems, the optimization is

done over a T×K-dimensional vector, where T is the number
of time-steps and K is the number of degrees of freedom. We
denote the optimization variables as x1:T , where xt describes
the configuration at the tth timestep. To encourage minimum-
length paths, we use the sum of squared displacements,

f(x1:T ) =

T−1∑
t=1

‖xt+1 − xt‖2 . (2)

Besides obstacle avoidance, common inequality constraints
in motion planning problems include joint limits and joint
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angular speed limits. Common equality constraints include
the end-effector pose (i.e., reach a target pose at the end of
the trajectory) and orientation constraints (keep a held object
upright). For underactuated, nonholonomic motion planning
problems, additional equality constraints are added to ensure
that the kinematics are consistent. We will discuss some of
these constraints in Sec. VII.

Sequential convex optimization solves a non-convex op-
timization problem by repeatedly constructing a convex
subproblem—an approximation to the problem around the
current iterate x. The subproblem is used to generate a step
∆x that makes progress on the original problem. Two key
ingredients of a sequential convex optimization algorithm are:
(1) a method for constraining the step to be small, so the
solution vector remains within the region where the approx-
imations are valid; (2) a strategy for turning the infeasible
constraints into penalties, which eventually drives all of the
constraint violations to zero. For (1), we use a trust region
modeled as a box constraint around the current iterate. For
(2) we use `1 penalties: each inequality constraint gi(x) ≤ 0
becomes the penalty |gi(x)|+, where |x|+ = max (x, 0); each
equality constraint hi(x) = 0 becomes the absolute value
penalty |hi(x)|. In both cases, the penalty is multiplied by
some coefficient µ, which is sequentially increased, usually by
multiplying by a constant scaling factor at each step, during
the optimization to drive constraint violations to zero. Note
that `1 penalties are non-differentiable but convex, and convex
optimization algorithms can efficiently minimize them. Our
implementation uses a variant of the classic `1 penalty method
[34], which is described in Algorithm 1.

In the outer loop (PenaltyIteration, line 1) we increase the
penalty coefficient µ by a constant scaling factor (k = 10
in all our experiments) until all the constraints are satisfied,
terminating when the coefficient exceeds some threshold. The
next loop (ConvexifyIteration, line 2) is where we repeatedly
construct a convex approximation to the problem and then
optimize it. In particular, we approximate the objective and
inequality constraint functions by convex functions that are
compatible with a quadratic program (QP) solver, and we
approximate the nonlinear equality constraint functions by
affine functions. The nonlinear constraints are incorporated
into the problem as penalties, while the linear constraints are
directly imposed in the convex subproblems. The next loop
(TrustRegionIteration, line 4) is like a line search; if the true
improvement (TrueImprove) to the non-convex merit func-
tions (objective plus constraint penalty) is a sufficiently large
fraction of the improvement to our convex approximations
(ModelImprove), then the step is accepted.

The use of `1 penalties is called an exact penalty method,
because if we multiply the penalty by a large coefficient
(tending to infinity but the value is smaller in practice), then
the minimizer of the penalized problem is exactly equal to the
minimizer of the constrained problem. This is in contrast to
the typical `2 penalty method that penalizes squared error, i.e.,
gi(x) ≤ 0→ (|gi(x)|+)2 and hi(x) = 0→ hi(x)2. `1 penalty
methods give rise to numerically-stable algorithms that drive

Algorithm 1 `1 penalty method for sequential convex opti-
mization.
Parameters:

µ0: initial penalty coefficient
s0: initial trust region size
c: step acceptance parameter
τ+, τ−: trust region expansion and shrinkage factors
k: penalty scaling factor
ftol, xtol: convergence thresholds for merit and x
ctol: constraint satisfaction threshold

Variables:
x current solution vector
µ penalty coefficient
s trust region size

1: for PenaltyIteration = 1, 2, . . . do
2: for ConvexifyIteration = 1, 2, . . . do
3: f̃ , g̃, h̃ = ConvexifyProblem(f, g, h)
4: for TrustRegionIteration = 1, 2, . . . do

5: x← arg min
x

f̃(x) + µ

nineq∑
i=1

|g̃i(x)|+ + µ

neq∑
i=1

|h̃i(x)|

subject to trust region and linear constraints
6: if TrueImprove /ModelImprove > c then
7: s← τ+ ∗ s . Expand trust region
8: break
9: else

10: s← τ− ∗ s . Shrink trust region
11: if s < xtol then
12: goto 15
13: if converged according to tolerances xtol or ftol then
14: break
15: if constraints satisfied to tolerance ctol then
16: break
17: else
18: µ← k ∗ µ

the constraint violations to zero.
Note that the objective we are optimizing contains non-

smooth terms like |a ·x+b| and |a ·x+b|+. However, the sub-
problems solved by our algorithm are quadratic programs—a
quadratic objective subject to affine constraints. We accom-
modate these non-smooth terms while keeping the objective
quadratic by adding auxilliary slack variables [34]. To add
|a · x+ b|+, we add slack variable t and impose constraints

0 ≤ t
a · x+ b ≤ t (3)

Note that at the optimal solution, t = |a · x + b|+. Similarly,
to add the term |a · x+ b|, we add s+ t to the objective and
impose constraints

0 ≤ s, 0 ≤ t
s− t = a · x+ b (4)

At the optimal solution, s = |a · x+ b|+, t = | − a · x− b|+,
so s+ t = |a · x+ b|.
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A. Sequential Convex Optimization over SE(3)

The optimization method outlined above operates in vector
spaces of the form Rn. However, motion planning for under-
actuated, nonholonomic systems such as bevel-tipped flexible
needles, or steerable needles, involves planning over mani-
folds. In this work, we consider the trajectory optimization
problem defined over the special Euclidean group SE(3),
which is a 6D configuration space consisting of the robot
pose (3D position and 3D orientation) i.e., at each time step
t ∈ T , the configuration xt is parameterized as a pose
Xt =

[
Rt pt

0T
3 1

]
∈ SE(3), where pt ∈ R3 is the position and

Rt ∈ SO(3) is the rotation matrix that encodes the orientation
of the waypoint frame relative to a world coordinate frame.

The Lie group SE(3) is a smooth manifold. To perform
local optimization over SE(3), we will need to form a local
coordinate parametrization of the manifold. This parametriza-
tion is provided by the Lie algebra se(3), which is defined
as the tangent vector space at the identity of SE(3), and,
informally, consists of infinitesimal rotations. The SE(3)
group and se(3) algebra are related via the exponential and
log maps, exp : se(3) → SE(3) and log : SE(3) → se(3),
where exp and log correspond to the matrix exponential and
log operations.

Given a vector x̄ = [ p̄r̄ ] ∈ R6 that represents the incremental
twist, the corresponding Lie algebra element is given by the
mapping ∧ : R6 → se(3) as

x̄∧ =
[

[r̄] p̄

0T
3 0

]
, (5)

where the notation [r̄] for the vector r̄ = [r̄x r̄y r̄z]
T ∈ R3 is

the 3× 3 skew-symmetric matrix given by

[r̄] =

[
0 −r̄z r̄y
r̄z 0 −r̄x
−r̄y r̄x 0

]
. (6)

Intuitively, r̄ represents the incremental rotation and p̄ rep-
resents the incremental translation to be applied to a nominal
pose. The inverse is defined by the operator ∨ : se(3) → R6

to recover x̄ given a Lie algebra element, i.e.,
[

[r̄] p̄

0T
3 0

]∨
= x̄.

The local neighborhood X of a nominal pose X̂ ∈ SE(3) is
defined in terms of x̄ ∈ R6 as

X = X̂ · exp(x̄ ∧), (7)

where exp(x̄∧) can be explicitly computed as [33]:

exp(x̄∧) =
[
I p̄

0T
3 1

]
, r̄ = 03 or

[
er̄ Ap̄

0T
3 1

]
, r̄ 6= 03 (8)

where

er̄ = I +
[r̄]

‖r̄‖ sin ‖r̄‖+
[r̄]2

‖r̄‖2
(1− cos ‖r̄‖), (9)

A = I +
[r̄]

‖r̄‖2
(1− cos ‖r̄‖) +

[r̄]2

‖r̄‖3
(‖r̄‖ − sin ‖r̄‖) (10)

Note that an alternative approach would be to use a global
parameterization of the rotation group, such as axis-angle
coordinates or Euler angles. The drawback of those param-
eterizations is that they distort the geometry—for example,

consider how a map of the world is distorted around the
poles. This distortion can severely slow down an optimization
algorithm, by reducing the neighborhood where local (first and
second-order) approximations are good.

We now describe how to generalize sequential convex
optimization to the case where the domain is a differentiable
manifold rather than Rn. There is an extra step in constructing
each convex subproblem: we first form a local coordinate
parametrization of the manifold around the current solution
(a point on the manifold). Then we approximate the merit
function fµ(θ) in terms of this parameterization.

In this work, at the ith iteration of SQP our trajectory con-
sists of a sequence of nominal poses X̂ (i) = {X̂(i)

0 , . . . , X̂
(i)
T }.

To construct the QP subproblem, we parametrize each pose
in terms of increments to the previous solution: X̂ (i+1) =

{X̂(i)
0 · exp(x̄

(i)
0
∧), . . . , X̂

(i)
T · exp(x̄

(i)
T
∧)} where X̄ (i) =

{x̄(i)
0 , . . . , x̄

(i)
T } is the sequence of incremental twists.

IV. NO-COLLISIONS CONSTRAINT

This section describes how the no-collisions constraint can
be efficiently formulated for a discretely-sampled trajectory
that ensures that a given robot configuration x is not in
collision. We can use this constraint to encourage the robot
to be collision-free at each time step. We later show how this
can be extended to encourage continuous-time safety i.e., the
robot stays collision-free between time steps.

A. Discrete-time no-collisions constraint

Let A,B,O be labels for rigid objects, each of which is a
link of the robot or an obstacle. The set of points occupied
by these objects are denoted by calligraphic letters A,B,O ⊂
R3. We sometimes use a superscript to indicate the coordinate
system of a point or a set of points. Aw ⊂ R3 denotes the
set of points in world coordinates occupied by A, whereas
AA denotes the set of points in a coordinate system local
to object A. The poses of the objects A,B are denoted as
FwA , F

w
B , where FwA is a rigid transformation that maps from

the local coordinate system to the global coordinate system.
Our method for penalizing collisions is based on the notion

of minimum translation distance, common in collision detec-
tion [13]. The distance between two sets A,B ⊂ R3, which is
nonzero for non-intersecting sets, is defined as

dist(A,B) = inf{‖T‖
∣∣ (T +A) ∩ B 6= ∅} (11)

Informally, it’s the length of the smallest translation T that
puts the shapes in contact. The penetration depth, which is
nonzero for overlapping shapes, is defined analogously as the
minimum translation that takes two shapes out of contact:

penetration(A,B) = inf{‖T‖
∣∣ (T +A) ∩ B = ∅} (12)

The signed distance is defined as follows:

sd(A,B) = dist(A,B)− penetration(A,B) (13)

Note that these concepts can also be defined using the notion
of a configuration space obstacle and the Minkowski difference
between the shapes—see e.g. [13].
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Fig. 2. Minimal translational distance and closest points.

The convex-convex signed distance computation can be
performed efficiently. The distance between two shapes can
be calculated by the Gilbert-Johnson-Keerthi (GJK) algo-
rithm [15], while the penetration depth is calculated by
a different algorithm, the Expanding Polytope Algorithm
(EPA) [52]. One useful feature of these two algorithms, which
makes them so generally applicable, is that they represent an
object A by its support mapping, i.e., a function that maps
vector v to the point in A that is furthest in direction v:

sA(v) = arg max
p∈A

v · p (14)

This representation makes it possible to describe convex
shapes implicitly without considering explicit polyhedral rep-
resentations of their surfaces. We will exploit this fact to
efficiently check for collisions against swept-out volumes of
the robot between time steps.

Two objects are non-colliding if the signed distance is
positive. We will typically want to ensure that the robot has
a safety margin dsafe. Thus, we want to enforce the following
constraints at each timestep

sd(Ai,Oj) ≥ dsafe ∀i ∈ {1, 2, . . . , Nlinks},
∀j ∈ {1, 2, . . . , Nobstacles}

(obstacle collisions)
sd(Ai,Aj) ≥ dsafe ∀i, j ∈ {1, 2, . . . , Nlinks} (15)

(self collisions)

where {Ai} is the collection of links of the robot, and {Oj}
is the set of obstacles. These constraints can be relaxed to the
following `1 penalty

Nlinks∑
i=1

Nobs∑
j=1

|dsafe − sd(Ai,Oj)|+

+

Nlinks∑
i=1

Nlinks∑
j=1

|dsafe − sd(Ai,Bj)|+ (16)

A single term of this penalty function |dsafe− sd(Ai,Oj)|+ is
illustrated in Fig. 3.

Note that in practice, we do not consider all pairs of
objects for the collision penalty (Eq. (16)) since the penalty
corresponding to most pairs of faraway objects is zero. For
computational efficiency, we query a collision checker for all
pairs of nearby objects in the world with distance smaller than

penalty

dcheckdsafe0
sd

Saturday, February 2, 13

Fig. 3. Hinge penalty for collisions

a user-defined distance dcheck between them where dcheck >
dsafe, and formulate the collision penalty based on these pairs.

We can form a linear approximation to the signed distance
using the robot Jacobian and the notion of closest points. Let
AA,BB ⊂ R3 denote the space occupied by A and B in local
coordinates, and let pA ∈ AA and pB ∈ BB denote the local
positions of contact points. FwA and FwB denote the objects’
poses.

To define closest points and our derivative approximation,
first note that the signed distance function is given by the
following formula, which applies to both the overlapping and
non-overlapping cases:

sd({A,FwA }, {B,FwB }) = max
‖n̂‖=1

min
pA∈A,
pB∈B

n̂ · (FwApA − FwBpB)

(17)

The closest points pA,pB and normal n̂ are defined as a triple
for which the signed distance is optimum, as described in Eq.
(17). Equivalently, the contact normal n̂ is the direction of the
minimal translation T (as defined in Eqs. (11) and (12)), and
pA and pB are a pair of points (expressed in local coordinates)
that are touching when we translate A by T (Fig. 2).

Let’s assume that the pose of A is parameterized by the
configuration vector x (e.g., the robot’s joint angles), and B is
stationary. (This calculation can be straightforwardly extended
to the case where both objects vary with x, which is necessary
for dealing with self-collisions.) Then we can linearize the
signed distance by assuming that the local positions pA,pB
are fixed, and that the normal n is also fixed, in Eq. (17).

We first linearize the signed distance with respect to the
positions of the closest points:

sdAB(x) ≈ n̂ · (FwA (x)pA − FwBpB) (18)

By calculating the Jacobian of pA with respect to x, we can
linearize this signed distance expression at x0:

∇x sdAB(x)

∣∣∣∣
x0

≈ n̂TJpA
(x0)

sdAB(x) ≈ sdAB(x0) + n̂TJpA
(x0)(x− x0)

(19)

The above expression allows us to form a local approximation
of one collision cost term with respect to the robot’s degrees of
freedom. This approximation is used for every pair of nearby
objects returned by the collision checker. After we linearize the
signed distance, this cost can be incorporated into a quadratic
program (or linear program) using Eq. (3).
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Fig. 4. Illustration of the non-differentiability of the signed distance function.
Here, a square is rotated about its center by angle θ. The true function is shown
by a solid line, and the linearization is shown by a dotted line. It is correct
to first-order in non-degenerate situations, however, in degenerate situations
where the signed distance is non-differentiable, it gives an erroneous gradient
estimate. Empirically, the optimization works well despite this issue.

Note that Eq. (19), which assumes that the normal n̂ and
the closest points are fixed, is correct to first order in non-
degenerate situations involving polyhedra. However, in degen-
erate cases involving face-face contacts, the signed distance is
non-differentiable as a function of the poses of the objects,
and the above formula deviates from correctness. Empirically,
the optimization does not seem to get stuck at the points of
non-differentiability. Fig. 4 illustrates this phenomenon for two
squares. An interesting avenue for future work would be to
develop approximations to the the signed distance penalty that
provide a better local approximation.

B. Continuous-Time Trajectory Safety

The preceding discussion formulates the no-collisions con-
straint for a discretely-sampled trajectory. However, when
such a trajectory is converted to a continuous-time trajectory
for execution, e.g., by linear interpolation or cubic splines,
the resulting continuous-time trajectory might have collisions
between time steps—see Fig. 5.

We can modify the collision penalty from Section IV-A to
give a cost that enforces the continuous-time safety of the
trajectory (though it makes a geometric approximation). It is
only twice as computationally expensive than the discrete-time
collision cost of the previous section since it involves twice
as many narrow-phase collision queries.

T

B

A(t)

A(t+1)

Friday, February 1, 13

Fig. 5. Illustration of swept volume for use in our continuous collision cost.

Consider a moving object A and a static object B, for
0 ≤ t ≤ 1. The motion is free of collision if the swept-
out volume ∪tA(t) does not intersect B. First suppose that
A undergoes only translation, not rotation. (We will consider
rotations below.) Then the swept-out volume is the convex hull
of the initial and final volumes [52]⋃

t∈[0,1]

A(t) = convhull(A(t),A(t+ 1)) (20)

Thus we can use the same sort of collision cost we described
in Section IV-A, but now we calculate the signed distance
between the swept-out volume of A and the obstacle B:

sd(convhull(A(t),A(t+ 1)),B) (21)

We perform the necessary signed distance computation
without having to calculate the convex hull of shapes
A(t), A(t + 1), since (as noted in Sec. IV-A) the signed
distance cost can be calculated using the support mappings.
In particular, the support mapping is given by

sconvhull(C,D)(v) =

{
sC(v) if sC(v) · v > sD(v) · v
sD(v) otherwise

(22)

Calculating the gradient of the swept-volume collision cost
is slightly more involved than discrete case described in
Eqs. (18) and (19). Let’s consider the case where object A
is moving and object B is stationary, as in Fig. 5. Let’s
suppose that A and B are polyhedral. Then the closest point
pswept ∈ convhull(A(t), A(t + 1)) lies in one of the faces
of this polytope. convhull(A(t), A(t+ 1)) has three types of
faces: (1) all the vertices are from A(t), (2) all of the vertices
are from A(t+ 1), and (3) otherwise. Cases (1) and (2) occur
when the deepest contact in the interval [t, t+1] occurs at one
of the endpoints, and the gradient is given by the discrete-time
formula. In case (3), we have to estimate how the closest point
varies as a function of the poses of A at times t and t+ 1.

We use an approximation for case (3) that is compu-
tationally efficient and empirically gives accurate gradient
estimates. It is correct to first order in non-degenerate 2D
cases, but it is not guaranteed to be accurate in 3D. Let
pswept, pB , denote the closest points and normals between
convhull(A(t), A(t+1)) and B, respectively, and let n̂ be the
normal pointing from B into A.

1) Find supporting vertices p0 ∈ A(t) and p1 ∈ A(t + 1)
by taking the support map of these sets along the normal −n̂.

2) Our approximation assumes that the contact point pswept

is a fixed convex combination of p0 and p1. In some cases,
p0, pswept, and p1 are collinear. To handle the other cases,
we set

α =
‖p1 − pswept‖

‖p1 − pswept‖+ ‖p0 − pswept‖
, (23)

where we make the approximation

pswept(x) ≈ αp0 + (1− α)p1 (24)
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3) Calculate the Jacobians of those points

Jp0
(xt0) =

d

dxt
p0, Jp1

(xt+1
0 ) =

d

dxt+1
p1 (25)

4) Similarly to Eq. (19), linearize the signed distance around
the trajectory variables at timesteps t and t+ 1

sdAB(xt,xt+1) ≈ sdAB(xt0,x
t+1
0 ) + αn̂TJp0

(xt0)(xt − xt0)

+ (1− α)n̂TJp1(xt+1
0 )(xt+1 − xt+1

0 ) (26)

The preceding discussion assumed that the shapes undergo
translation only. However, the robot’s links also undergo
rotation, so the convex hull will underestimate the swept-out
volume. This phenomenon is illustrated in Fig. 6. We can
calculate a simple upper-bound to the swept-out volume, based
on the amount of rotation. Consider a shape A undergoing
translation T and rotation angle φ around axis k̂ in local
coordinates. Let A(t) and A(t + 1) be the occupied space
at the initial and final times, respectively. One can show that
if we expand the convex hull convhull(A(t), A(t + 1)) by
darc = rφ2/8, where r is the maximum distance from a point
on A to the local rotation axis, then the swept-out volume is
contained inside.

Fig. 6. Illustration of the difference between swept out shape and convex
hull. The figure shows a triangle undergoing translation and uniform rotation.
The swept-out area is enclosed by dotted lines, and the convex hull is shown
by a thick gray line.

In summary, we can ensure continuous time safety by
ensuring that for each time interval [t, t+ 1]

sd(convhull(A(t),A(t+ 1)),O) > dsafe + darc (27)

One could relax this constraint into a penalty as described
in Sec. IV-A, by approximating φ(xt,xt+1). In practice, we
ignored the correction darc, since it was well under 1 cm in all
of the problems we considered.

The no-collisions penalty for the continuous-time trajectory
safety is only twice as expensive as the discrete no-collisions
penalty since we have to calculate the support mapping of
a convex shape with twice as many vertices. As a result,
the narrow-phase collision detection takes about twice as
long. The upshot is that the continuous collision cost solves
problems with thin obstacles where the discrete-time cost fails
to get the trajectory out of collision. An added benefit is that
we can ensure continuous-time safety while parametrizing the
trajectory with a small number of time steps, reducing the
computational cost of the optimization.

V. MOTION PLANNING BENCHMARK

Our evaluation is based on four test scenes included with the
MoveIt! distribution — bookshelves, countertop, industrial,
and tunnel scenes; and a living room scene imported from
google sketchup. The set of planning problems was created
as follows. For each scene we set up the robot in a number
of diverse configurations. Each pair of configurations yields
a planning problem. Our tests include 198 arm planning
problems and 96 full-body problems (Fig. 7). We ran all
the experiments on a machine with an Intel i7 3.5 GHz
CPU. The complete source code necessary to reproduce this
set of experiments or evaluate a new planner is available at
https://github.com/joschu/planning benchmark.

Fig. 7. Scenes in our benchmark tests. Left and center: two of the scenes
used for the arm planning benchmark. Right: a third scene, showing the path
found by our planner on an 18-DOF full-body planning problem.

We compared TrajOpt to open-source implementations of
bi-directional RRT [23] and a variant of KPIECE [46] from
OMPL/MoveIt! [4, 6], that is part of the ROS motion planning
libraries. All algorithms were run using default parameters and
post-processed by the default smoother used by MoveIt!. We
also compared TrajOpt to a recent implementation of CHOMP
[61] on the arm planning problems. We did not use CHOMP
for the full-body planning problems because they were not
supported in the available implementation.

Initialization: We tested both our algorithm and CHOMP
under two conditions: single initialization and multiple initial-
izations. For the single initialization, we used a straight line
initialization in configuration space by linearly interpolating
between start and goal configurations. For multiple initializa-
tions, we used the following methodology.

Arm planning problems: Prior to performing experiments,
we manually selected four waypoints W1,W2,W3,W4 in joint
space. These waypoints were fixed for all scenes and problems.
Let S and G denote the start and goal states for a planning
problem. Then we used the four initializations SW1G, SW2G,
SW3G, SW4G, which linearly interpolate between S and
Wi for the first T/2 time-steps, and then linearly interpolate
between Wi and G for the next T/2 timesteps.

Full-body planning problems: We randomly sampled the
environment for base positions (x, y, θ) with the arms tucked.
After finding a collision-free configuration W of this sort,
we initialized with the trajectory SWG as described above.
We generated up to 5 initializations this way. Note that
even though we initialize with tucked arms, the optimization
typically untucks the arms to improve the cost.
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OMPL-RRTConnect OMPL-LBKPIECE CHOMP-HMC CHOMP-HMC-Multi TrajOpt TrajOpt-Multi
success fraction 0.85 0.76 0.65 0.83 0.82 0.96

avg. time (s) 0.62 1.30 4.91 9.27 0.19 0.30
avg. norm length 1.56 1.61 2.04 1.97 1.16 1.15

TABLE I
Results on 198 arm planning problems for a PR2, involving 7 degrees of freedom.

OMPL-RRTConnect OMPL-LBKPIECE TrajOpt TrajOpt-multi
success fraction 0.41 0.51 0.73 0.88

avg. time (s) 20.3 18.7 2.2 6.1
avg. norm length 1.54 1.51 1.06 1.05

TABLE II
Results on 96 full-body planning problems for a PR2, involving 18 degrees of freedom (two arms, torso, and base).

Implementation details: Our current implementation of
the continuous-time collision cost does not consider self-
collisions, but we penalized self-collisions at discrete times
as described in Sec. IV-A. For collision checking, we took the
convex hull of the geometry of each link of the robot, where
each link is made of one or more meshes. The termination
conditions we used for the optimization were (i) maximum
of 40 iterations, (ii) minimum merit function improvement
ratio of 10−4, (iii) minimum trust region size 10−4, and (iv)
constant penalty scaling factor k = 10. We used the Bullet
collision checker [7] for convex-convex collision queries. We
used T = 11 timesteps for the arm and T = 41 timesteps for
the full-body trajectories. The sampling-based planners were
limited to 30 seconds on full-body planning problems.

Results: The results for arm planning are shown in Table
I and for full-body planning are shown in Table II. We
evaluated TrajOpt and compared it with other planners in terms
of (1) average computation time for all successful planning
runs computed over all problems, and (2) average normalized
trajectory length over all problems that is computed as the
average of the trajectory lengths normalized by dividing by
the shortest trajectory length for that problem across all
planners (value of 1 for a planner indicates that the shortest
trajectory was found by the planner for all problem instances).
TrajOpt solves a higher percentage of problems on this bench-
mark, is computationally more efficient, and computes shorter
trajectories on average. TrajOpt with multiple initializations
outperformed the other approaches in both sets of problems.
Multiple trajectory initializations are important to guide the
optimization out of local minima and improves the success rate
for both TrajOpt and CHOMP. Sec. IX presents a discussion
of why multiple trajectory initializations are important.

VI. PHYSICAL EXPERIMENTS

A. Environment preprocessing

One of the main challenges in porting motion planning
from simulation to reality is creating a useful representation
of the environment’s geometry. Depending on the scenario,
the geometry data might be live data from a Kinect or
laser range finder, or it might be a mesh produced by an
offline mapping procedure. We used our algorithm with two

different representations of environment geometry: (1) convex
decomposition, and (2) meshes.

Convex decomposition: Convex decomposition seeks to
represent a general 3D volume approximately as a union
of convex bodies [27]. Hierarchical Approximate Convex
Decomposition (HACD) [30] is a leading method for solving
this problem, and it is similar to agglomerative clustering algo-
rithms. It starts out with each triangle of a surface mesh as its
own cluster, and it repeatedly merges pairs of clusters, where
the choice of which clusters to merge is based on an objective
function. The algorithm is terminated once a sufficiently small
number of clusters is obtained. We used Khaled Mammou’s
implementation of HACD, which, in our experience, robustly
produced good decompositions, even on the open meshes
we generated from single depth images. Example code for
generating meshes and convex decompositions from Kinect
data, and then planning using our software package TrajOpt,
is provided in a tutorial at http://rll.berkeley.edu/trajopt.

Meshes: Our algorithm also can be used directly with mesh
data. The mesh is viewed as a soup of triangles (which
are convex shapes), and we penalize collision between each
triangle and the robot’s links. For best performance, the mesh
should first be simplified to contain as few triangles as possible
while faithfully representing the geometry, e.g. see [5].

B. Experiments

We performed several physical experiments involving a
mobile robot (PR2) to explore two aspects of TrajOpt: (1)
applying it to the “dirty” geometry data that we get from depth
sensors such as the Kinect, and (2) validating if the full-body
trajectories can be executed in practice. Our end-to-end system
handled three full-body planning problems:

1) Grasp a piece of trash on a table and place it in a garbage
bin under a table (one arm + base).

2) Open a door, by following the appropriate pose trajectory
to open the handle and push (two arms + torso + base).

3) Drive through an obstacle course, where the PR2 must
adjust its torso height and arm position to fit through over-
hanging obstacles (two arms + torso + base).

The point clouds we used were obtained by mapping out the
environment using SLAM and then preprocessing the map to
obtain a convex decomposition. Videos of these experiments
are available at http://rll.berkeley.edu/trajopt/ijrr.
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VII. EXAMPLE APPLICATIONS WITH DIFFERENT
CONSTRAINTS

A. Humanoid walking: Static stability

Fig. 8. The Atlas humanoid robot in simulation walking across the room
while avoiding the door frame and other obstacles in the environment, and
pushing a button. Each footstep was planned for separately using TrajOpt
while maintaining static stability. Five time steps of the trajectory are shown.

We used TrajOpt to planning a statically stable walking
motion for the Atlas humanoid robot model. The degrees of
freedom include all 28 joints and the 6 DOF pose, where
we used the axis–angle (exp map) representation for the
orientation. The walking motion is divided into four phases (1)
left foot planted, (2) both feet planted (3) right foot planted,
and (4) both feet planted. We impose the constraint that the
center of mass constantly lies above the convex hull of the
planted foot or feet, corresponding to the zero-moment point
stability criterion [53]. The convex support polygon is now
represented as an intersection of k half-planes, yielding k
inequality constraints:

aixcm(θ) + biycm(θ) + ci ≤ 0, i ∈ {1, 2, . . . , k}, (28)

where the ground-projection of the center of mass (xcm, ycm)
is a nonlinear function of the robot configuration.

Using this approach, we use TrajOpt to plan a sequence of
steps across a room, as shown in Fig. 8. Each step is planned
separately using the phases described above. The robot is able
to satisfy these stability and footstep placement constraints
while ducking under an obstacle and performing the desired
task of pushing a button.

B. Pose constraints

TrajOpt can readily incorporate kinematic constraints, for
example, the constraint that a redundant robot’s end effector is
at a certain pose at the end of the trajectory. A pose constraint
can be formulated as follows. Let Ftarg =

[
Rtarg ptarg

0T
3 1

]
∈

SE(3) denote the target pose of the gripper, and let Fcur(x)
be the current pose. Then F−1

targFcur(x) gives the pose error,
measured in the frame of the target pose. This pose error can
be represented as the six-dimensional error vector:

h(x) = log(F−1
targFcur(x)) = (tx, ty, tz, rx, ry, rz) (29)

where (tx, ty, tz) is the translation part, and (rx, ry, rz) is the
axis-angle representation of the rotation part obtained using

the log map, where log(X) can be explicitly computed for a
matrix X ∈ SE(3) as [33]:

log(X) =
[
I p
03 0

]
, R = I or

[
θω̂ A−1p

0T
3 0

]
, R 6= I (30)

where

θ = arccos
trace(R)− 1

2
, ω̂ =

1

2 sin θ
(R−RT ) (31)

A−1 = I − 1

2
θω̂ +

2 sin θ − θ(1 + cos θ)

2 sin θ
ω̂2 (32)

One can also impose partial orientation constraints. For
example, consider the constraint that the robot is holding a
box that must remain upright. The orientation constraint is an
equality constraint, namely that an error vector (vwx , v

w
y )(x)

vanishes. Here, v is a vector that is fixed in the box frame
and should point upwards in the world frame.

Saturday, February 2, 13

Fig. 9. Several stages of a box picking procedure, in which boxes are taken
from the stack and moved to the side. The box, and hence the end effector
of the robot arm, is subject to pose constraints.

Fig. 9 shows our algorithm planning a series of motions that
pick boxes from a stack. Our algorithm typically plans each
motion in 30− 50 ms.

VIII. NEEDLE STEERING AND CHANNEL LAYOUT
PLANNING

We formulate the curvature-constrained planning problem
in 3D environments as a nonlinear, constrained optimization
problem. Depending on the specific application, the trajectory
may be required to have a constant curvature κmax for all time
steps, as required for planning trajectories for bevel-tip flexible
needles, or a bounded curvature 0 ≤ κt ≤ κmax for each
time step for given κmax, as required for planning curvature-
constrained channels within 3D-printed implants. Although the
following formulation is specific to needle steering and chan-
nel planning, it can be easily generalized to other curvature-
constrained planning problems.

Ptarget

X0

X1

Xt
XT−1

XT

Oj

Oi

Fig. 10. A discretized curvature-constrained trajectory is parameterized as
{X0, . . . , Xt, . . . , XT }, where Xt ∈ SE(3) is the pose of the waypoint
frame relative to a world coordinate frame at each time step t.
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The state at each time step is denoted as Xt =
[
Rt pt

0T
3 1

]
∈

SE(3), where where pt ∈ R3 is the position and Rt ∈ SO(3)
is the rotation matrix that encodes the orientation of the frame
relative to a world coordinate frame.

The trajectory optimization problem can then be stated as:
Objective: Given an entry zone Pentry and a target zone

Ptarget, determine a locally optimal and curvature-constrained
trajectory Xt : t ∈ T which starts from the entry zone and
reaches the target zone while avoiding obstacles.

Input: Obstacle definitions Oi ∈ O, an entry zone Pentry,
a target zone Ptarget, the constant curvature or the maximum
curvature κmax, and the discretization parameter T .

Output: Returns a feasible, collision-free trajectory Xt :
t ∈ {1, . . . , T} with X0 ∈ Pentry and XT ∈ Ptarget, or reports
that no feasible trajectory can be found.

Metrics: For applications like medical needle steering, it is
important to address the issue of optimality of the computed
trajectories since sub-optimal trajectories might cause exces-
sive tissue damage during the procedure, leading to delayed
recovery times. We consider the following metrics in our work
to quantify plan optimality:

1) Minimizing the total needle insertion length: This metric
is relevant to procedures in vital organs such as the brain where
limiting tissue damage is important.

2) Minimizing the total twist: Unnecessary twisting of
the needle causes tissue damage and also induces torsion in
the needle shaft, which leads to errors while planning and
controlling the motion of the needle [49].

3) Maximizing the minimum clearance from obstacles:
Short trajectories often pass in close proximity to obstacles,
thereby increasing the likelihood of collisions. Trajectories that
have a greater minimum clearance from obstacles, on the other
hand, are safer because they are less likely to collide with
anatomical obstacles when deviations occur but tend to be
longer. This metric could be useful when obstacle avoidance
is critical but other tissue damage is manageable.

The optimization problem is formulated as follows:

min
X̄ ,U

α∆Cost∆ + αφCostφ + αOCostO, (33a)

s.t. log((Xt · exp(w∧t ) · exp(v∧t ))−1 ·Xt+1)∨ = 06,
(33b)

sd(Xt, Xt+1,Oi) ≥ dsafe + darc, (33c)
X0 ∈ Pentry, XT ∈ Ptarget, (33d)
− π ≤ φt ≤ π, (33e)
κt = κmax or 0 ≤ κt ≤ κmax, (33f)

∆

T−1∑
t=0

κt ≤ cmax for channel planning, (33g)

where U is the set of all control variables and X̄ =
{x̄0, . . . , x̄T } is the sequence of incremental twists.

The constraints and costs are described in detail below.
1) Kinematics constraint: We use a “stop-and-turn” strategy

1 for the kinematics model. At each time step t : 0 ≤ t ≤ T−1,
we apply a rotation φt to the pose Xt and then propagate the
frame by a distance ∆ to arrive at Xt+1. We require this
distance to be the same for all time steps. See Fig. 11 for
illustration. For a feasible trajectory, the poses at adjacent time
steps Xt and Xt+1 are related as:

Xt · exp(w∧t ) · exp(v∧t ) = Xt+1, (34)

where wt = [ 0 0 0 0 0 φt ]
T and vt = [ 0 0 ∆ ∆κt 0 0 ]

T . We
transform this constraint in SE(3) to a constraint in se(3)
using the log map to get Eq. (33b).

Xt

Xt+1

∆

xt

yt

zt θ ≡ ∆κt

φt

xt+1

yt+1

zt+1

[0, 0, 0]T

[x, y, z]T

z
κt

√ x2 + y2

Fig. 11. Stop and turn strategy: Apply a rotation φt to the pose Xt at time
step t and then propagate the frame by a distance ∆ to arrive at Xt+1.

2) No-collision constraint: We impose constraints (Eq.
(33c)) for the trajectory to be collision-free, where
sd(Xt, Xt+1,Oi) is the signed distance between the trajectory
segment in time interval [t, t+ 1] and the ith obstacle Oi. We
approximate the segment by the convex hull of the object (the
needle tip or a small segment on the channel) between time
t and t + 1, and we account for the approximation error in
rotation by adding an error correction term darc. Instead of
numerically computing the gradient, we linearize the signed
distance using the contact normal n̂. The signed distance
linearization is given by

sd(Xt,Oi) ≈ sd(X̂t,Oi) + n̂TJpt
(06)x̄, (35)

where the Jacobian matrix Jpt
(06) = [ R̂t 03×3 ]. The ex-

pression for the Jacobian follows from the fact that we get
pt = R̂tAp̄t + p̂t (Eqs. (7)–(10)), where A is defined in the
exponential map with respect to r and is the identity matrix
for r̄ = 03. Hence

∂pt
∂p̄t

(06) = R̂t, and
∂pt
∂r̄t

(06) = 03×3. (36)

We include the continuous-time non-convex no-collisions con-
straint is included as a `1 penalty in the optimization, as
described in Sec. IV-B.

1This is a natural choice for needle steering, since it corresponds to first
twisting the base of the needle, and then pushing it forward, which induces
less damage than constantly twisting the needle tip while pushing it. This
strategy also results in channels that are easier for catheters to go through.
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3) Total curvature constraint: For channel planning, we
impose a constraint (Eq. (33g)) on the total curvature of the
trajectory. This is done to ensure that catheters carrying the
radioactive source can be pushed through the channels [14].
We choose cmax = 1.57 rad for all of our experiments.

4) Costs: To penalize tissue damage for needle steering and
to make the trajectory more efficient for channel planning, we
add costs on the total length of the trajectory and the twists
to the objective at each time step:

Cost∆ = T∆ and Costφ =

T−1∑
t=0

φ2
t . (37)

For needle steering, we add an extra term to favor large
minimum clearance from obstacles to deal with expected
needle deflections:

CostO = − min
0≤t≤T−1
Oi∈O

sd(Xt, Xt+1,Oi). (38)

Instead of directly optimizing over CostO, we insert an
auxiliary variable dmin and reformulate the cost term as:

CostO = −dmin, dmin ≤ sd(Xt, Xt+1,Oi). (39)

The objective (Eq. (33a)) is a non-negative weighted sum
of the costs above, where α∆, αφ, αO ≥ 0 are user-defined
coefficients to leverage different costs. A relatively large αO,
for instance, may result in trajectory with larger clearance from
obstacles, at the expense of a longer trajectory.

Shooting vs. Collocation: For trajectory optimization prob-
lems, especially ones involving differential constraints, there
are two ways to construct locally convex approximations of
the costs and constraints for setting up the QP subproblem.
Shooting-based methods first integrate the current controls and
then construct the convex approximation around the integrated
trajectory, which is guaranteed to satisfy all differential con-
straints. Collocation-based methods, on the other hand, ap-
proximate the cost and constraints directly around the current
solution, which might correspond to an infeasible trajectory
that does not satisfy differential constraints.

In the context of optimization on SE(3), shooting-based
methods satisfy the curvature constraints, but the integrated
trajectory might violate the constraints on the entry zone
and target zone. It is easier to satisfy constraints on the
start and target zones with collocation-based methods but the
differential curvature constraint is difficult to satisfy. We refer
the reader to [1] for details on these methods.

A. Simulation Experiments

We experimentally evaluated TrajOpt on two real-world
applications involving medical needle steering and designing
channel layouts for brachytherapy. We ran all the experiments
on a machine with an Intel i7 3.5 GHz CPU.

1) Medical needle steering: We used an anatomical model
of the human male pelvic region to simulate needle insertion
in tissue for delivering radioactive doses to targets within the
prostate. We considered randomly sampled targets within the
prostate for our experiments. We set the entry zone to be

a 0.1 cm × 5 cm × 2.5 cm region on the perineum (skin)
through which needles are typically inserted for needle-based
prostate procedures. The target zones were modeled as spheres
around the target points with radius 0.25 cm, within the range
of average placement errors (≈ 0.63 cm) encountered during
procedures performed by experienced clinicians [50]. The
average distance between the entry zone and the target zone
is 10 cm and and we set κmax = 0.125cm−1. We used
T = 10 time steps for our experiments, such that the step
length was roughly 1cm. For the objective function, we used
α∆ = αφ = 1, and we compared the planned trajectory with
different choices of the clearance coefficient αO. Figs. 12(a)
and 12(b) show examples of planned trajectories with different
values of αO = 1 and αO = 10.

(a) (b)

Fig. 12. Changing the value of the parameter αO influences the clearance of
the trajectory from obstacles in the environment. Zoomed in view of the male
prostate region (target inside prostate shown in red). (a) Smaller clearance
from obstacles (Cowper’s glands) with αO = 1 resulting in a potentially
unsafe trajectory. (b) Larger clearance from obstacles with αO = 10.

We compared the performance of shooting and collocation-
based methods for optimization. We also compared the per-
formance of TrajOpt with a sampling-based rapidly-exploring
random tree (RRT) planner [57]. The RRT planner was modi-
fied to plan backwards starting from target zones because it is
easier to compute feasible constant curvature trajectories that
reach a larger entry region.

Planning for a single needle: We analyzed the planned tra-
jectory for single needle insertion using 400 sampled points in
the prostate. For each task, we repeatedly ran the optimization
initialized by a perturbed solution of the previous run, and
we allowed up to 5 reruns. We evaluated the performance of
collocation versus shooting in terms of the average running
time and percentage of solved problems for the converged
solutions. As shown in Table III, we observed that shooting
outperforms collocation in terms of the fraction of problems
solved and running times. Using a larger clearance coefficient
results in trajectories farther away from obstacles, at the
expense of slightly longer paths.

TrajOpt outperforms the RRT planner in terms of the
number of problems solved. The trajectories computed using
the RRT planner have a very high twist cost, which is a result
of the randomized nature of the planning algorithm. Since
the twist cost is directly correlated with tissue damage, the
trajectories computed using TrajOpt are preferable over those
computed by a randomized planner.

12



RRT TrajOpt
Collocation
αO = 1

Shooting
αO = 1

Collocation
αO = 10

Shooting
αO = 10

success fraction 0.67 0.76 0.80 0.79 0.89
time (s) 9.8± 8.1 1.8± 1.2 1.6± 1.7 1.9± 1.3 1.8± 1.7

path length 11.1± 1.5 11.3± 1.4 11.6± 1.7 11.9± 1.7 13.1± 2.3

twist cost 34.9± 10.0 1.4± 1.4 1.0± 1.0 1.6± 1.6 1.0± 1.0

clearance 0.5± 0.4 0.7± 0.5 0.5± 0.3 1.3± 0.4 1.2± 0.5

TABLE III
Single needle planning: Sampling-based RRT planner versus TrajOpt.

Simulation: To evaluate the feasibility and performance
of TrajOpt under uncertainty, we ran 100 simulations for a
specific target with increasing noise levels. System uncertainty
was modeled by perturbing the incremental twists with addi-
tive Gaussian noise. We assumed that the pose of needle is
measured accurately by a Kalman filter or sensing equipment,
and we re-planned after every time step based on the estimated
state. We considered a simulation to be successful if it was
both collision free and if it reached the target zone. To ensure
path safety, we chose αO = 10 for all tasks. We examined the
effect of increasing noise level on the success rate (Fig. 13).

0% 100% 200% 300% 400% 500%

0%

50%

100%

Noise level%
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cc
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s%

Collocation w/ re-planning
Shooting w/ re-planning
Collocation open loop

Shooting open loop

Fig. 13. Effect of noise level on the success rate.

Re-planning after each time step greatly increases the
probability of success. Collocation consistently outperforms
shooting in terms of success rate for all noise levels. Since
shooting-based methods integrate the trajectory after each
iteration of the optimization, the state at the last time step
deviates from the target region, making it difficult to find a
feasible solution. We also observed a significant difference
in the total running time for the simulation, where colloca-
tion takes 2.3 seconds on average, and shooting takes 6.7
seconds on average. This suggests that it might be easier to
perform local error corrections to an existing trajectory using
collocation as compared to shooting based methods. In this
regard, TrajOpt can be considered as a replacement for local
trajectory correction approaches suggested by [44, 38]. We do
not consider comparison with the RRT planning method since
it computes trajectories working backwards from the target and
hence is not suitable for re-planning in the forward direction.

Planning for multiple needles: We analyzed the perfor-
mance of TrajOpt for planning for 5 needle trajectories using
1000 sampled points within the prostate (200 trials). We
computed multiple collision-free trajectories by planning them
sequentially such that the computed trajectories were mutually
collision-free. We compared the result of collocation versus

shooting-based strategies. For the multiple needle planning
experiments, shooting offered an advantage over collocation
in terms of computational time required to compute a fea-
sible solution and the quality of trajectories computed. Fig.
1(e) shows planned trajectories for a single trial. Table IV
summarizes our result, which shows that TrajOpt outperforms
the RRT planner both in terms of computation time and the
fraction of problems solved. The trajectories computed using
the sampling-based RRT planner have a very high twist cost,
which is also undesirable.

RRT TrajOpt
Collocation Shooting

success fraction 0.48 0.75 0.79
time (s) 50.0± 19.0 18.0± 9.0 15.3± 15.2

path length 54.6± 3.1 53.9± 2.5 56.5± 3.4

twist cost 168.3± 28.4 3.8± 1.5 2.5± 1.8

clearance 0.1± 0.08 0.1± 0.03 0.1± 0.06

TABLE IV
Multiple needle planning: Sampling-based RRT planner versus TrajOpt.

2) Channel layout planning: We considered a scenario
where 3D-printed implant is prepared for treatment of
OB/GYN tumors (both vaginal and cervical), as shown in Fig.
1(f). The implant was modeled as a cylinder of height 7 cm and
radius 2.5 cm, with a hemisphere on top with radius 2.5cm.
The implant was designed based on dimensions reported by
Garg et al. [14]. We set the entry region to be the base of
the implant. We require that the curvature along the path is at
most 1cm−1 and that the total curvature on the trajectory (Eq.
33g) is at most 1.57. This constraint is necessary to ensure that
catheters carrying the radioactive seed can be pushed through
the channels. Instead of planning forward from the entry to the
target, we planned backwards from the target to the entry zone
using the shooting method, since the entry constraint is much
easier to satisfy than the target constraint. Fig. 1(f) shows an
optimized channel layout computed using our method.

The experiment results are summarized in Table V. We
compared the performance of TrajOpt with a highly-optimized
RRT-based planner [14]. Both the RRT-based approach and
TrajOpt have a randomization aspect associated with them –
while the RRT uses random sampling, our multi-trajectory
planning procedure uses random perturbations to initialize
the optimization. We solved the same problem 100 times to
account for the random nature. TrajOpt is able to compute a
feasible solution in almost all cases, whereas the RRT planner
fails more often to find a feasible solution and computes plans
that have a higher cumulative path length and twist cost as
compared to the solution computed using TrajOpt.

RRT TrajOpt

success fraction 0.74 0.98
time (s) 30.8± 17.9 27.7± 9.8

path length 41.3± 0.3 38.9± 0.1

twist cost 65.5± 8.4 4.1± 1.1

TABLE V
Channel layout planning: Sampling-based RRT planner versus TrajOpt.
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(a) (b)

(c) (d)

Fig. 14. Failure cases when using TrajOpt. (a) shows the initial path for
full-body planning. (b) is the trajectory optimization outcome, which is stuck
in an infeasible condition. (c) shows the initial path for the arm planning and
the collision cannot be resolved in the final trajectory shown in (d).

IX. IMPORTANCE OF TRAJECTORY INITIALIZATION

Trajectory optimization for motion planning is a challenging
non-convex constrained optimization problem. Given an initial
trajectory that may contain collisions and violate constraints,
trajectory optimization methods such as TrajOpt and CHOMP
can often quickly converge to a high-quality, locally-optimal
solution. However, these methods suffer from a critical lim-
itation: their performance heavily depends on the provided
trajectory initialization and they are not guaranteed to find
a collision-free solution as the no-collisions constraints in the
optimization are non-convex.

For instance, certain initializations passing through obsta-
cles in unfavorable ways may get stuck in infeasible solutions
and cannot resolve all the collisions in the final outcome, as
illustrated in Fig. 14. Fig. 15 shows some scenarios illustrating
how trajectory optimization tends to get stuck in local optima
that are not collision-free. It is important whether the signed
distance normal is consistent between adjacent links or adja-
cent waypoints in an initial trajectory, else a bad initialization
tends to have adjacent waypoints which push the optimization
in opposing directions. As a consequence, these methods
typically require multiple initializations. This explains why
the use of multiple trajectory initializations performs better
for challenging planning problems (Tables I, II).

X. SOURCE CODE AND REPRODUCIBILITY

All of our source code is available as a BSD-licensed
open-source package called TrajOpt that is freely available
here http://rll.berkeley.edu/trajopt. Optimization problems can
be constructed and solved using the underlying C++ API or
through Python bindings. Trajectory optimization problems

x1
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x3

x4

n2

n3

(a)

x1

x2

x3

x4

(b)

x1 x2 x3 x4 x5

(c)

l3

l2

l1

n3

n2

(d)

Fig. 15. Illustration of typical reasons for trajectory optimization to get
stuck in local optima that are not collision-free. (a) The gradient based
on penetration depth may push waypoints in in-consistent directions. (b)
The gradient based on distance fields has the same problem. (c) When a
robot collides simultaneously with multiple obstacles, the robot may get
stuck in an infeasible local optimum as different obstacles push the robot
in different directions. (d) For a robot with multiple links, the gradient may
result in inconsistent directions for different links. xi in these figures denote
configurations at different time steps along the trajectory.

can be specified in JSON string that specifies the costs,
constraints, degrees of freedom, and number of timesteps. We
are also working on a MoveIt plugin [4] so our software can
be used along with ROS tools.

For robot and environment representation, we use Open-
RAVE, and for collision checking we use Bullet, because of
the high-performance GJK-EPA implementation and collision
detection pipeline. Two different backends can be used for
solving the convex subproblems: (1) Gurobi, a commercial
solver, which is free for academic use [35]; and (2) BPMPD
[31], a free solver included in our software distribution.

The benchmark results presented in this paper can be repro-
duced by running scripts provided at http://rll.berkeley.edu/
trajopt/ijrr. Various examples, including humanoid walking
and arm planning with orientation constraints, are included
with our software distribution.

XI. CONCLUSION

We presented TrajOpt, a trajectory optimization approach
for solving robot motion planning problems. At the core of
our approach is the use of sequential convex optimization with
`1 penalty terms for satisfying constraints, an efficient for-
mulation of the no-collision constraint in terms of the signed
distance, which can be computed efficiently for convex objects,
and the use of support mapping representation to efficiently
formulate the continuous-time no-collision constraints.
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We benchmarked TrajOpt against sampling-based plan-
ners from OMPL and CHOMP. Our experiments indicate
that TrajOpt offers considerable promise for solving a wide
variety of high-dimensional motion planning problems. We
also presented a discussion of the importance of trajectory
initialization for optimization based approaches. The source
code has been made available freely for the benefit of the
research community.
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[53] M. Vukobratović and B. Borovac. Zero-moment pointthirty five
years of its life. Int. Journal of Humanoid Robotics, 1(1):157–

173, 2004.
[54] C.W. Warren. Global path planning using artificial potential

fields. In Proc. Int. Conf. Robotics and Automation (ICRA),
pages 316–321, 1989.

[55] R. J. Webster III, J. S. Kim, Noah J. Cowan, G. S. Chirikjian,
and Allison M. Okamura. Nonholonomic modeling of needle
steering. Int. Journal of Robotics Research, 25(5-6):509–525,
2006.

[56] A. Werner, R. Lampariello, and C. Ott. Optimization-based
generation and experimental validation of optimal walking
trajectories for biped robots. In Proc. Int. Conf. on Intelligent
Robots and Systems (IROS), pages 4373–4379, 2012.

[57] J. Xu, V. Duindam, R. Alterovitz, and K. Goldberg. Motion
planning for steerable needles in 3D environments with ob-
stacles using rapidly-exploring random trees and backchaining.
In IEEE Int. Conf. on Automation Science and Engg. (CASE),
pages 41–46, 2008.

[58] J. Xu, V. Duindam, R. Alterovitz, J. Pouliot, J. A. Cunha,
I. Hsu, and K. Goldberg. Planning fireworks trajectories for
steerablemedical needles to reduce patient trauma. In Proc. Int.
Conf. on Intelligent Robots and Systems (IROS), pages 4517–
4522, 2009.

[59] G. Yang and V. Kapila. Optimal path planning for unmanned air
vehicles with kinematic and tactical constraints. In IEEE Conf.
on Decision and Control (CDC), volume 2, pages 1301–1306,
2002.

[60] K. Yang and S. Sukkarieh. An analytical continuous-curvature
path-smoothing algorithm. IEEE Trans. on Robotics, 26(3):561–
568, 2010.

[61] M. Zucker, N. Ratliff, A.D. Dragan, M. Pivtoraiko, M. Klingen-
smith, C.M. Dellin, J.A. Bagnell, and S.S. Srinivasa. CHOMP:
Covariant hamiltonian optimization for motion planning. Int.
Journal of Robotics Research, 2012.

16


	Introduction
	Related work
	Background: Sequential Convex Optimization
	Sequential Convex Optimization over SE(3)

	No-collisions constraint
	Discrete-time no-collisions constraint
	Continuous-Time Trajectory Safety

	Motion planning benchmark
	Physical Experiments
	Environment preprocessing
	Experiments

	Example Applications with Different Constraints
	Humanoid walking: Static stability
	Pose constraints

	Needle Steering and Channel Layout Planning
	Simulation Experiments

	Importance of Trajectory Initialization
	Source code and reproducibility
	Conclusion
	Acknowledgements

