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Motivation




Deep Neural Networks in Computer Vision
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What is Reinforcement Learning?
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Reinforcement Learning Approaches
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What is Deep Reinforcement Learning?
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Examples of Deep Reinforcement Learning
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Deep Reinforcement Learning for Robotics
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Visual Servoing

current goal
observation observation




Examples of Visual Servoing: Manipulation

E Lab, UT Dallas,



Examples of Visual Servoing: Surgical Tasks
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Source:
Kehoe et al. 2016



Examples of Visual Servoing: Space Docking
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Learning Visual Servoing with Reinforcement Learning
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Learning Visual Servoing with Policy Optimization

example executions of trained policy

policy
optimization

observation

trained with more than
20000 trajectories!

c
o)
_'g
(0]
o
W o
(7]
e
o)




Outline

Introduction
Reinforcement learning and deep reinforcement learning
Visual servoing
Learn visual servoing with reinforcement learning
= Policy optimization
= Combine value and model based RL
= Learn visual feature dynamics
= Learn servoing policy with fitted Q-iteration
Comparison to prior methods

Conclusion



Combining Value and Model Based Reinforcement Learning

State-action value based RL: 7T(St) = arg max Q(St, u)
u



Combining Value and Model Based Reinforcement Learning

State-action value based RL: 7T(St) = arg ml}n —Q(St, u)
dynamics
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Servoing with Visual Dynamics Model

Xt Uy f(Xt’ ut)
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Features from Dilated VGG-16 Convolutional Neural Network
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K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. In ICLR, 2016.



Servoing with Visual Dynamics Model
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Servoing with Visual Dynamics Model
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Feature Dynamics: Multiscale Bilinear Model
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Feature Dynamics: Multiscale Bilinear Model
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Learning Model Based Policy with Fitted Q-lteration
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Learning Visual Servoing with Deep Feature Dynamics and FQl

value based + example executions of trained policy
visual dynamics model

observation

trained with only
20 trajectories!
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Comparison to Prior Methods
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Conclusion

Deep reinforcement learning allows us to learn complex robot
policies that can process complex visual inputs

Combine value based and model based for better sample
complexity

Visual servoing
= Learn visual feature dynamics

= Learn Q-values with fitted Q-iteration
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Resources

Paper: arxiv.org/abs/1703.11000
Code: github.com/alexlee-gk/visual_dynamics

Servoing benchmark code: github.com/alexlee-gk/citysir;3d ARL DeepDr’ ve

More videos: rll.berkeley.edu/visual_servoing
- .




