Learning Visual Servoing with Deep Features and Fitted Q-Iteration

Alex X. Lee¹, Sergey Levine¹, Pieter Abbeel^{2,1,3}

¹UC Berkeley, ²OpenAI, ³International Computer Science Institute

Motivation

Deep Neural Networks in Computer Vision

object detection

semantic segmentation

image classification

- Introduction
- Reinforcement learning and deep reinforcement learning
- Visual servoing
- Learn visual servoing with reinforcement learning
 - Policy optimization
 - Combine value and model based RL
 - Learn visual feature dynamics
 - Learn servoing policy with fitted Q-iteration
- Comparison to prior methods
- Conclusion

What is Reinforcement Learning?

Reinforcement Learning Approaches

What is Deep Reinforcement Learning?

Examples of Deep Reinforcement Learning

Silver et al, 2014 (DPG) Lillicrap et al, 2015 (DDPG)

Schulman et al, 2016 (TRPO + GAE)

Mnih et al, 2015 (DQN) Mnih et al, 2016 (A3C)

Tamar et al, 2016 (VIN)

Gu*, Holly*, et al, 2016

Levine*, Finn*, et al, 2016 (GPS)

Sadeghi et al, 2017 (CAD)²RL

Deep Reinforcement Learning for Robotics

Gu*, Holly*, et al, 2016

Levine*, Finn*, et al, 2016 (GPS)

Sadeghi et al, 2017 (CAD)²RL

- Introduction
- Reinforcement learning and deep reinforcement learning
- Visual servoing
- Learn visual servoing with reinforcement learning
 - Policy optimization
 - Combine value and model based RL
 - Learn visual feature dynamics
 - Learn servoing policy with fitted Q-iteration
- Comparison to prior methods
- Conclusion

Visual Servoing

Examples of Visual Servoing: Manipulation

Examples of Visual Servoing: Surgical Tasks

Source: Kehoe et al. 2016

Examples of Visual Servoing: Space Docking

Source: NASA

- Introduction
- Reinforcement learning and deep reinforcement learning
- Visual servoing
- Learn visual servoing with reinforcement learning
 - Policy optimization
 - Combine value and model based RL
 - Learn visual feature dynamics
 - Learn servoing policy with fitted Q-iteration
- Comparison to prior methods
- Conclusion

Learning Visual Servoing with Reinforcement Learning

image observation

- Introduction
- Reinforcement learning and deep reinforcement learning
- Visual servoing
- Learn visual servoing with reinforcement learning
 - Policy optimization
 - Combine value and model based RL
 - Learn visual feature dynamics
 - Learn servoing policy with fitted Q-iteration
- Comparison to prior methods
- Conclusion

Learning Visual Servoing with Policy Optimization

- Introduction
- Reinforcement learning and deep reinforcement learning
- Visual servoing
- Learn visual servoing with reinforcement learning
 - Policy optimization
 - Combine value and model based RL
 - Learn visual feature dynamics
 - Learn servoing policy with fitted Q-iteration
- Comparison to prior methods
- Conclusion

Combining Value and Model Based Reinforcement Learning

State-action value based RL:

$$\pi(\mathbf{s}_t) = \arg\max_{\mathbf{u}} Q(\mathbf{s}_t, \mathbf{u})$$

State-action value based RL: $\pi(\mathbf{s}_t) = rg\min - Q(\mathbf{s}_t, \mathbf{u})$

Visual servoing:

Servoing with Visual Dynamics Model

Features from Dilated VGG-16 Convolutional Neural Network

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015. F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. In ICLR, 2016.

Servoing with Visual Dynamics Model

Servoing with Visual Dynamics Model

$$\pi(\mathbf{x}_t, \mathbf{x}_*) = \arg\min_{\mathbf{u}} \underbrace{||\mathbf{y}_* - f(\mathbf{y}_t, \mathbf{u}_t)||_{\mathbf{w}}^2}_{-Q_{\mathbf{w}}(\mathbf{s}_t, \mathbf{u})}$$

- Introduction
- Reinforcement learning and deep reinforcement learning
- Visual servoing
- Learn visual servoing with reinforcement learning
 - Policy optimization
 - Combine value and model based RL
 - Learn visual feature dynamics
 - Learn servoing policy with fitted Q-iteration
- Comparison to prior methods
- Conclusion

Feature Dynamics: Multiscale Bilinear Model

Feature Dynamics: Multiscale Bilinear Model

- Introduction
- Reinforcement learning and deep reinforcement learning
- Visual servoing
- Learn visual servoing with reinforcement learning
 - Policy optimization
 - Combine value and model based RL
 - Learn visual feature dynamics
 - Learn servoing policy with fitted Q-iteration
- Comparison to prior methods
- Conclusion

Learning Model Based Policy with Fitted Q-Iteration

$$\pi(\mathbf{s}_t) = \arg\min_{\mathbf{u}} \underbrace{||\mathbf{y}_* - f(\mathbf{y}_t, \mathbf{u}_t)||_{\mathbf{w}}^2}_{-Q_{\mathbf{w}}(\mathbf{s}_t, \mathbf{u})}$$

Learning Visual Servoing with Deep Feature Dynamics and FQI

example executions of trained policy

value based + visual dynamics model

- Introduction
- Reinforcement learning and deep reinforcement learning
- Visual servoing
- Learn visual servoing with reinforcement learning
 - Policy optimization
 - Combine value and model based RL
 - Learn visual feature dynamics
 - Learn servoing policy with fitted Q-iteration
- Comparison to prior methods
- Conclusion

Comparison to Prior Methods

Feature Representation and Optimization Method

Conclusion

- Deep reinforcement learning allows us to learn complex robot policies that can process complex visual inputs
- Combine value based and model based for better sample complexity
- Visual servoing
 - Learn visual feature dynamics
 - Learn Q-values with fitted Q-iteration

Thank You

Resources

Paper: arxiv.org/abs/1703.11000 Code: github.com/alexlee-gk/visual_dynamics Servoing benchmark code: github.com/alexlee-gk/citysim3d More videos: rll.berkeley.edu/visual_servoing Acknowledgements

