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Motivation



Deep	Neural	Networks	in	Computer	Vision

image	classification semantic	segmentation
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What	is	Reinforcement	Learning?

Agent Environment

state s, reward r

action u



Reinforcement	Learning	Approaches
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What	is	Deep	Reinforcement	Learning?
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Examples	of	Deep	Reinforcement	Learning

Schulman	et	al,	2016	
(TRPO	+	GAE)

Silver	et	al,	2014	
(DPG)	

Lillicrap	et	al,	2015	
(DDPG) Levine*,	Finn*,	

et	al,	2016	
(GPS)

Gu*,	Holly*,	et	al,	2016

Sadeghi	et	al,	2017	(CAD)2RL	
Tamar	et	al,	2016	

(VIN)

Mnih	et	al,	2015	(DQN)	
Mnih	et	al,	2016	(A3C)



Deep	Reinforcement	Learning	for	Robotics

Levine*,	Finn*,	
et	al,	2016	

(GPS)

Gu*,	Holly*,	et	al,	2016

Sadeghi	et	al,	2017	(CAD)2RL	
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Visual	Servoing

current	
observation

goal	
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Examples	of	Visual	Servoing:	Manipulation

Source: SeRViCE Lab, UT Dallas



Examples	of	Visual	Servoing:	Surgical	Tasks

Source: 
Kehoe et al. 2016



Examples	of	Visual	Servoing:	Space	Docking

Source: NASA
4x
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Learning	Visual	Servoing	with	Reinforcement	Learning

Agent Environment

state s, reward r

action u

current	and	goal	
image	observation

linear	and	angular	
velocities

distance	to	desired	
pose	relative	to	car
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Learning	Visual	Servoing	with	Policy	Optimization
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20000	trajectories!
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Combining	Value	and	Model	Based	Reinforcement	Learning

State-action	value	based	RL: ⇡(st) = argmax

u
Q(st,u)



Combining	Value	and	Model	Based	Reinforcement	Learning

⇡(st) = argmin
u

�Q(st,u)

�Q(st,u)

State-action	value	based	RL:

Visual	servoing:

dynamics	
function

⇡(xt,x⇤) = argmin
u

||x⇤ � f(xt,ut)||2⇡(st) = argmin
u

||x⇤ � f(xt,ut)||2



Servoing	with	Visual	Dynamics	Model
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Features	from	Dilated	VGG-16	Convolutional	Neural	Network

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015. 
F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. In ICLR, 2016.



Servoing	with	Visual	Dynamics	Model
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⇡(xt,x⇤) = argmin
u

||y⇤ � f(yt,ut)||2w

Servoing	with	Visual	Dynamics	Model

�Qw(st,u)



■ Introduction	

■ Reinforcement	learning	and	deep	reinforcement	learning	

■ Visual	servoing	

■ Learn	visual	servoing	with	reinforcement	learning	

■ Policy	optimization	

■ Combine	value	and	model	based	RL	

■ Learn	visual	feature	dynamics	

■ Learn	servoing	policy	with	fitted	Q-iteration	

■ Comparison	to	prior	methods	

■ Conclusion

Outline



Feature	Dynamics:	Multiscale	Bilinear	Model



Feature	Dynamics:	Multiscale	Bilinear	Model
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Learning	Model	Based	Policy	with	Fitted	Q-Iteration

�Qw(st,u)

⇡(st) = argmin
u

||y⇤ � f(yt,ut)||2w



Learning	Visual	Servoing	with	Deep	Feature	Dynamics	and	FQI
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Comparison	to	Prior	Methods
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■ Deep	reinforcement	learning	allows	us	to	learn	complex	robot	
policies	that	can	process	complex	visual	inputs	

■ Combine	value	based	and	model	based	for	better	sample	
complexity	

■ Visual	servoing	

■ Learn	visual	feature	dynamics	

■ Learn	Q-values	with	fitted	Q-iteration

Conclusion



Thank	You

Resources
Paper:	
Code:	

Servoing	benchmark	code:	
More	videos:

arxiv.org/abs/1703.11000		
github.com/alexlee-gk/visual_dynamics		
github.com/alexlee-gk/citysim3d	
rll.berkeley.edu/visual_servoing
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