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Hi, I’m Alex Lee, a PhD student at UC Berkeley. In this talk, I’ll present how to learn visual servoing with deep features and fitted Q-iteration. This is joint work with Sergey Levine and Pieter Abbeel.



Motivation

Robots have the potential to greatly improve human lives. In robotics manipulation, robots can help us in the house, at a factory, or in surgical procedures. In mobile robotics, self-driving cars can reduce 
accidents and traffic, delivery drones can reduce delivery times and costs, and ambulance drones can deliver critical medical equipment to a patient going through an emergency. 
All of these robotic tasks share the same challenges: the robot needs to process complex visual information, and the robot needs to figure out how to act based on what it observes. 
In order to process visual information, we can benefit from the success that CNNs have achieved in computer vision.



Deep	Neural	Networks	in	Computer	Vision
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AlexNet

Deep CNNs are multi-layer computation graphs that takes in images and output some desired information of the images. 
Deep learning has allowed to achieve impressive results in computer vision tasks, such as image classification, semantic segmentation, object detection, and object tracking. 
We can leverage the success in computer vision to enable robots to understand the visual world. 
What about enabling robots to learn how to act? For that, we can use reinforcement learning.
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With that in mind, I’ll first briefly explain what is reinforcement learning.



What	is	Reinforcement	Learning?

Agent Environment

state s, reward r

action u

Reinforcement learning is a branch of machine learning that is concerned with taking a sequence of actions. 
It is usually described in terms of an agent interacting with an environment whose goal is to maximize cumulative rewards. 
For a given state, the agent acts by choosing an action according to a policy. Then, the state of the agent changes, and the agent receives a scalar reward. 
In robotics, the state can be, for example, camera images or the joint angles of the robot, and the action can be the joint torques or high-level motor commands. 
The reward can indicate progress towards a goal, with higher rewards being better.
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There are 3 main approaches for reinforcement learning. 
The first one is policy optimization, which directly learns a policy that maps from states to actions. The policy is denoted by the greek letter pi. 
The second approach learns a value function Q, which maps state-action pairs to Q-values. The Q-value indicates the best cumulative sum of rewards the agent can get, conditioned on the current state s and 
action u. The optimal policy can readily be obtained by greedily optimizing for the action that will achieve the best Q-value from the current state. 
These two approaches are called model-free reinforcement learning since it doesn’t use a model of the environment. 
In contrast, model-based reinforcement learning learns a model of the environment. For example, it might learn a dynamics function of how states change over time or it might learn a model of how the rewards 
are generated. 
These approaches vary widely in terms of the number of samples needed to learn a policy. Among the RL approaches, policy optimization requires the most amount of samples, while model-based methods 
requires the least, and value-based methods are somewhere in between. 
For robotic tasks, sample complexity is important because interaction in the real world is expensive and time-consuming. 
However, one advantage of policy optimization is that learning the policy directly might be simpler than learning the value function or a model of the environment. For example, in robotic grasping, the value 
function or the model of the environment can be very complicated due to the discontinuities caused by contacts. 
Value-based RL can be challenging for continuous and high-dimensional action spaces, since we need to solve for the optimal action to get the policy. This challenge can be mitigated by restricting the 
parametrization of the Q-function. 
Model-based RL relies on a good model of the environment, since a bad model can lead to compounding errors.



What	is	Deep	Reinforcement	Learning?
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Deep neural networks can process complex sensory input and also compute really complex functions. These deep neural networks can be used for the policy or the value function in model-free RL, or for the 
models in model-based RL.



Examples	of	Deep	Reinforcement	Learning
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Previous work have used policy optimization for locomotion tasks in simulation, and value-based RL to learn how to play in Atari games. 
Deep RL has also been used with robots in the real world. In order to make the learning feasible, previous work combine model-based RL with policy optimization or value-based RL. Or, they train in simulation, 
and then transfer the policy to the real-world system.



Deep	Reinforcement	Learning	for	Robotics
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So, can we just train a deep neural network to learn an arbitrary robotic task without having any prior knowledge of the structure of the task? 
We can but… it would require a lot of samples. 
If we have prior knowledge of the structure of the problem that we are trying to solve, we can learn with less samples. 
In this talk, I’ll show an example application to illustrate how we can incorporate structure of a task for deep RL.
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Visual	Servoing
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[Explain the setup] 
In the literature, this is an example of a classical problem in robotics, called visual servoing. 
Visual servoing involves choosing actions that move a robot in response to camera observations in order to reach a goal configuration.



Examples	of	Visual	Servoing:	Manipulation

Source: SeRViCE Lab, UT Dallas



Examples	of	Visual	Servoing:	Surgical	Tasks

Source: 
Kehoe et al. 2016



Examples	of	Visual	Servoing:	Space	Docking

Source: NASA
4x
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Learning	Visual	Servoing	with	Reinforcement	Learning
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Learning	Visual	Servoing	with	Policy	Optimization
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Combining	Value	and	Model	Based	Reinforcement	Learning

State-action	value	based	RL: ⇡(st) = argmax

u
Q(st,u)



Combining	Value	and	Model	Based	Reinforcement	Learning
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State-action	value	based	RL:

Visual	servoing:

dynamics	
function

⇡(xt,x⇤) = argmin
u

||x⇤ � f(xt,ut)||2⇡(st) = argmin
u

||x⇤ � f(xt,ut)||2



Servoing	with	Visual	Dynamics	Model
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Features	from	Dilated	VGG-16	Convolutional	Neural	Network

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015. 
F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. In ICLR, 2016.
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Servoing	with	Visual	Dynamics	Model
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Feature	Dynamics:	Multiscale	Bilinear	Model



Feature	Dynamics:	Multiscale	Bilinear	Model
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Learning	Model	Based	Policy	with	Fitted	Q-Iteration

�Qw(st,u)

⇡(st) = argmin
u

||y⇤ � f(yt,ut)||2w

Not all features are equally relevant; relevance is task-dependent 
To capture long-term dependencies, use Q-values 
Learn Q-function approximator with fitted Q-iteration



Learning	Visual	Servoing	with	Deep	Feature	Dynamics	and	FQI
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Comparison	to	Prior	Methods
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■ Deep	reinforcement	learning	allows	us	to	learn	complex	robot	
policies	that	can	process	complex	visual	inputs	

■ Combine	value	based	and	model	based	for	better	sample	
complexity	

■ Visual	servoing	

■ Learn	visual	feature	dynamics	

■ Learn	Q-values	with	fitted	Q-iteration

Conclusion

In this talk, I’ll showed an example application to illustrate how we can incorporate structure of a task for deep RL, in the context of visual servoing. 
I described an approach that combines learned visual features with learning predictive dynamics models and reinforcement learning to learn visual servoing mechanisms. 
Our experiments demonstrate that standard deep features, in our case taken from a model trained for object classification, can be used together with an action-conditional predictive model to learn an effective 
visual servo that is robust to visual variation, changes in viewing angle and appearance, and occlusions. 
For control we propose to learn Q-values, building on fitted Q-iteration, which at execution time allows for one-step lookahead calculations that optimize long term objectives. 
Our method can learn an effective visual servo on a complex synthetic car following benchmark using just 20 training trajectory samples for reinforcement learning. We demonstrate substantial improvement 
over a conventional servoing approach, and we show an improvement in sample-efficiency of more than two orders of magnitude over standard model-free deep reinforcement learning algorithms.



Thank	You

Resources
Paper:	
Code:	

Servoing	benchmark	code:	
More	videos:

arxiv.org/abs/1703.11000		
github.com/alexlee-gk/visual_dynamics		
github.com/alexlee-gk/citysim3d	
rll.berkeley.edu/visual_servoing
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