

Hybrid Transitive Trust Mechanisms

Jie Tang

Electrical Engineering and Computer Science UC Berkeley

Sven Seuken

School of Engineering & **Applied Sciences** Harvard University

David C. Parkes School of Engineering &

Applied Sciences Harvard University

Motivation

- Large multi-agent systems must deal with fraudulent behavior
 - •eBay auctions
 - •P2P file sharing
 - •Web surfing
- Pool collective experience
- •Need mechanisms for aggregating trust

Strategyproofness

Experiment Setup

•Two application domains: P2P file sharing and web surfing •Setup

- N agents, each with type θ_i
- Cooperative, lazy free-rider, strategic

Model

•Goal: Figure out who is trustworthy. •Goal: Keep agents from lying. •Use transitive trust

Problem

•Trade-off between informativeness and strategyproofness •Prior work generally focuses on one or the other

Value Strategyproof Rank Strategyproof

Generalize ε -value- and ε -rank strategyproof

Tradeoffs

Hyb

Informativeness	PageRank / EigenTrust	
	Hitting Time	value-strategyproof
	Max Flow	
	Shortest Path	rank-strategyproof
Hybrid Mechanisms		
$\alpha\left(\begin{array}{c} \hline \\ \hline $		

 Agents choose interactions using hybrid trust mechanism

- Report results of interactions
- Measure efficiency as fraction of good interactions for cooperative agents

Virus Distribution Experiment

•This work addresses tradeoff explicitly **Example Mechanisms**

- Combine existing reputation mechanisms
 - Use convex weighting
- •Intermediate informativeness, strategyproofness •Better efficiency than either base mechanism

Empirical Informativeness

0.35 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Website Ranking Experiment

 Informativeness is the correlation between true agents' types and final trust scores the mechanism produces

Conclusions

Manipulations

Theoretical Results

THEOREM 2. If transitive-trust mechanisms M^1 and M^2 are value-strategyproof and M^1 satisfies upwards value-preservance, then $M^{\alpha}(M^1, M^2)$ is α -rank-strategyproof.

•Shortest Path Hitting Time hybrid is α-rank strategyproof

THEOREM 1. If transitive-trust mechanisms M^1 and M^2 are ε_1 and ε_2 -value-strategyproof respectively, then $M^{\alpha}(M^1, M^2)$ is $((1 - \alpha)\varepsilon_1 + \alpha\varepsilon_2)$ -value-strategyproof.

•Maxflow PageRank hybrid is 0.5α-value strategyproof

 Analyzed informativeness and strategyproofness trade-off theoretically and experimentally •Hybrid mechanisms have intermediate informativeness, strategyproofness •For some domains the hybrids produce better efficiency than either base mechanism

•Future Work:

- Explicit modeling of strategic agent behavior
- Considering computational requirements