== Learning Parameterized Maneuvers for Autonomous Helicopter
i Aerobatics from Expert Demonstration

Introduction

e Robotics tasks often in-
volve specitying complex
trajectories

—-Ex: flying a stall turn
with a helicopter

e Goal: Learn representa-
tions of difficult maneu-
vers that we can query to
obtain novel trajectories.

Challenges

e Hard to specity maneu-
vers in high dimensional
spaces

e Many robotics platforms

cannot be accurately
modeled through all
operating regimes.

Solution Idea

e Leverage (suboptimal)
expert demonstrations to
learn target trajectories

e Learn dynamics model
locally tuned for specific
maneuver.

e Extend current state of

the art in helicopter aer-
obatics: A. Coates, P
Abbeel, A. Ng, ICML
2008 [1].

—Can fly aggressive heli-
copter maneuvers with
few demonstrations.

e Specify waypoints to
generate novel instances
of maneuver

Our Approach

Input: Maneuver type, target
waypoints

Output:  Maneuver that
passes through waypoints

1. Gather demonstrations

2. Initialize target trajectory
3. Repeat:

3a. Time-alignment

3b. Trajectory inference

Gather Demonstrations

e Gathered expert demon-
strations are suboptimal
and inconsistent.
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Time Alignment

smoothed away.

Raw Demonstrations
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e Dynamic Time Warping [2].
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e Align demonstrations so important structure is not

Aligned Demonstrations
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Irajectory Inference
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e Infer target trajectory based on demonstrations

—Structure of graphical model for a given alignment.

Query
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mate for target trajectory.

(Algorithm SM)

Effect of more demonstrations
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e Demonstrations are noisy “measurements.”

Results

Normalized hold out error
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e Fake “measurements” for query waypoints

e Run EKF and smoother to compute best posterior esti-

¢ Baseline: No DTW (Algorithm EM)

Hidden

e Baseline: Interpolate using convex weights which gen-
erate the target waypoints. (Algorithm CX)

¢ Baseline: Run the result of CX through a Kalman filter.

Effect of waypoints
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Algorithm

o Flew 3 aggressive maneuvers: stallturns, tictocs, loops.

Dynamics Modeling

e State: position, velocity, orientation, an-
gular velocity.

e Controls: 4 inputs controlling (pitch
rate,roll rate,yaw rate,vertical thrust)

U=vXr—wxXq+g,+ Cy X |u
V=wXp—uXr+g,+ Cyx|1;v]
W=uXqg—vXp+ gy+ Cy X |1;w; uy]
p=Cyx[Lipu

§=Cyx[Ligu

r=C, x|[1;r; us

e Learn model biases for each trajectory
by observing deviations during real
demonstrations. These biases are re-
markably consistent after alignment.

Raw Demonstration Model Bias Aligned Demonstration Model Bias

Model Error
Model Error

| |
151 200

Time (0.05s)

Helicopter Setu

- - v 2 = 2
- i ‘ L * g -
= = o of -
= 3 e i - A
e ] e = u o
o g = gy - a
B r. = . 5 MRl
b "o - = " 4 3 -
: ~ - B T d . |
| # - L e L
! el z ll - e A
] . ; i ke
' ull| B s L [
= el & e ThOS B L HG T o, T
LTSRN | TR i o om T =
b By T AT ST Ny 4 V' 1l ! g b L ?
1 s 1 o ; T Ak yi € :‘ o H i
| it B [y el L s T 3 T
11 I |I.'.- Lyl ! LIS F1 e fri tbrd L B - LI R

[

Position Data Orientation

P
A,

¥

e EKF for state estimation
o LOR for trajectory following
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—Linearize dynamics around target to
get A, By

e Receding Horizon iLQR control prob-
lem solved online

Conclusions

e This technique allows us to generate
parameterized, flyable trajectories for
challenging robotic platforms.

e Learn representation for large class of
similar trajectories.

e Learn locally tuned dynamics models
for control.
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