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•Likelihood ratio policy gradient methods are state of the art
techniques for reinforcement learning in continuous state
spaces.
– Learning to hit balls with a bat [7]
– Learning legged robot gaits [9]
•Model-free learning with strong convergence guarantees
• In this work:

– Show how policy gradient methods can be derived from
an importance sampling perspective

– Show more general form of optimal baselines.
– Present a new policy search method which leverages

these insights to outperform standard likelihood ratio PG
methods.

Introduction

Preliminaries:
•States st ∈ S = Rn, actions at ∈ A = Rm.
•Reward function R(st, at) ∈ R.
•Consider a class of stochastic policies parameterized by
θ.
•Let πθ : S × A→ [0, 1] denote a policy in this class.
•Sample state-action sequences (si0, a
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Policy Gradient Methods:
•Directly optimize expected reward U as a function of policy

parameters θ.

U(θ) = E
[∑H

t=1R(st, at)
∣∣∣ πθ]

•Can compute gradient of U from sample state-action se-
quences:

∇θU(θ) ≈ 1
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•Can add zero-mean baseline term to reduce variance. [6]

∇θU(θ) ≈ 1
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Importance Sampling:
• Importance sampling reweights samples gathered under

old policy parameters to form an (unbiased) estimate of
the expected return of novel, arbitrary policy parameters.
•Given sample state-action sequences {(st, at)}i ∼ θ2, esti-

mate expected return function Û IS(θ1):
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Background

•Suggests LRPG does not make full use of data.

Main Result: IS and Policy Gradients

The sample estimate of the gradient of Û IS(θ)

evaluated using only sample trajectories drawn
under πθ is equal to the likelihood ratio based
sample estimate of the gradient of U(θ).

Proposition:

•Set b to minimize variance of the estimator
•Directly applies to estimating Û IS

Main Result: Generalized Baselines

For any distribution Pθ(X), any scalar valued
function f (X), and any fixed vector b:
EPθ(X)[f (X)] = EPθ(X)

[
f (X)− bT∇θ logPθ(X)

]
Proposition:

Input: domain of policy parameters Θ, initial policy πθ̂MEM
0

for i = 0 to ... do
1. Run M trials under policy πθ̂MEM

i

2. Search within ESS region
for j = 1 : i do

θj ← θ̂MEM
j

while Û(θj) is improving do
gj ← step direction(Û(θj))

αj ← ESS line search(Û(θj), gj)

θj ← θj + αjgj
end while

end for
3. Update policy: θ̂MEM

i+1 = arg maxθj Û(θj)

end for

•Our approach: find local optima of Û IS

through memory-based optimization
•Use general minimum variance base-

line for estimating Û IS.
– Minimum variance b is also an expec-

tation: in principle, can reapply base-
line trick recursively.

– Introducing baselines increases model
complexity. Requires more samples
(or IS).

•Use effective sample size (ESS) to
limit search areas of θ space with many
samples [4]
•Do optimal line search (Armijo rule) [2]

Algorithm Summary

(a) (b) (c)

This figure demonstrates the effect of (a) memory based search (b) optimal baselines, and (c) ESS search region on cartpole performance. In each figure, we
show the performance of Peshkin and Shelton’s approach (PS) and our approach (OUR). In addition, we show the performance with memory only (PS+M),
baselines only (PS+B), and ESS only (PS+E), and our approach with memory (OUR-M), baselines (OUR-B), and ESS (OUR-E) removed. GPOMDP (GP) and
IS GPOMDP (ISGP) are also plotted for reference purposes.

(a) (b) (c)

(a) Performance of various choices for the higher level baselines in our approach. We have a matrix baseline (MAT), and a recursive baseline (REC). For
reference, we also plot our approach without an optimal baseline (GLO), GPOMDP (GP), and IS GPOMDP (ISGP). (b), (c) Performance evaluation on Cartpole
and LQR (another common benchmark). The algorithms considered are the GPOMDP likelihood ratio policy gradient method (GP), GPOMDP with importance
sampling (ISGP), Peshkin and Shelton’s algorithm (PS), and our approach (OUR).

Experiments

• s = (x1, x2, x3, x4) ∈ R4, a = u ∈ R.
• θ = (K, η) ∈ R5, η ∈ R

•Policy πθ(a|s) = N
(
Ks, 0.1 + 1

1+eη

)
•Reward is 0 inside target region, -2 on failure, -1 o.w.
•Right: cartpole system under initial policy, policy

learned with our approach, and policy learned with
REINFORCE. Black lines show the target region
where cost is 0.

Cartpole

•Generalizing GPOMDP-like temporal decomposition to the
IS setting by starting from the following expression for U(θ).

U(θ) =

H∑
t=1

E(s0,a0,...,st,at)∼θ [R(st, at) | πθ]

•Optimistic bandit-style exploration.
• Investigating dependence between samples.
•Validation on more complex domains.

Future Work

•Policy gradient methods are a special case of gradient descent over Û IS.
•Baselines used in policy gradients are a special case of generalized base-

lines.
– Minimum variance unbiased estimators can be computed for estimating
Û IS.

– Optimal baselines are themselves expectations, which can be given gener-
alized baselines recursively.

•Our experiments show fewer trials are needed to learn good controllers.

Conclusions
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