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Likelihood Ratio Policy Gradient

Likelihood ratio policy gradients are some of the most
successful reinforcement learning algorithms.

Consider a class of stochastic policies parameterized by θ; let
πθ : S × A→ [0, 1] denote a policy in this class.

Directly optimize expected reward over θ:

U(θ) = E

[
H∑
t=1

R(st , at)

∣∣∣∣∣ πθ
]

Can compute gradient of U from sample trajectories:

∇θU(θ) ≈ 1

m

m∑
i=1

H∑
t=1

∇θ log πθ(at | st)
H∑
t=1

R(st , at)
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Importance Sampling

Importance sampling:

Û(θ1) = E{(st ,at)}∼θ2

[
H∏
t=1

πθ1(at | st)

πθ2(at | st)

H∑
t=1

R(st , at)

]

Proposition (Importance Sampling and Policy Gradients)

The sample estimate of the gradient of Û(θ) evaluated using only
sample trajectories drawn under πθ is equal to the likelihood ratio
based sample estimate of the gradient of U(θ).

Implication: likelihood ratio policy gradient methods are not
making full use of the data.

However, importance sampling has not been widely adopted.
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Optimal Baselines

Optimal baselines for likelihood ratio PG methods:

∇θU(θ) = E{(st ,at)}∼θ

[
H∑
t=1

∇θ log πθ(at | st)

(
H∑
t=1

R(st , at)− b

)]

Proposition (Unbiased Baselines)

For any distribution Pθ(X ), any scalar valued function f (X ), and
any fixed vector b:

EPθ(X )[f (X )] = EPθ(X )

[
f (X )− bT∇θ logPθ(X )

]
We can set b to minimize the variance of the estimator.

We use this generalized baseline to estimate Û(θ).
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