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• Likelihood ratio policy gradient
methods (PGMs) are state of
the art techniques for reinforce-
ment learning in continuous state
spaces.
•Model-free learning with strong

convergence guarantees
•PGMs have been successfully ap-

plied to a variety of difficult robotics
problems, e.g.
– Learning to hit balls with a bat [8]
– Learning legged robot gaits [10]

Introduction

•States xt ∈ Rn

•Actions ut ∈ Rm

•Reward function r(xt, ut) ∈ R

•Discount factor γ.
•Sample trajectories τ by running

policy πθ.
•Given a parameterized policy rep-

resentation πθ(ut|xt), optimize dis-
counted sum of reward

min
θ
J(θ) = E

[
H∑
t=0

γtrt

]

Problem Formulation

•Gradient descent technique: pick
an initial starting θ0 and update

θk+1 = θk + αk∇θJ(θk)

•Can choose stepsize adaptively
(RPROP) [9]
•Given sampled trajectories τ i, can

compute Monte Carlo estimates of
the gradient (REINFORCE)

∇θJ(θ) = E[∇θ log pθ(τ )r(τ )]

•Can add zero-mean baseline term
to reduce variance and improve
convergence rate.

∇θJ(θ) = E[∇θ log pθ(τ )(r(τ )− b)]

•Optimal minimum variance base-
line has been shown to greatly im-
prove convergence speed. [7]

Policy Gradient Methods

• Importance sampling reweights old
samples to create unbiased esti-
mators for novel, arbitrary policies.
•Given sample trajectories τ , esti-

mate value function

Ĵ(θ) = Eq

[
pθ(τ )

q′θ(τ )
r(τ )

]
•Below, a contour plot of Ĵ for the

first 2 cartpole policy parameters.
Sample trajectories are marked in
black.

Importance Sampling

•Novel observation: given a single sample trajec-
tory, the gradient of Ĵ is the REINFORCE gradi-
ent direction.

∇θiJ(θ) = lim
ε→0

J(θ + εei)− J(θ − εei)
2ε

= E

[
r(τ )

pθ(τ )
lim
ε→0

pθ+εei(τ )− pθ−εei(τ )

2ε

]
= E

[
r(τ )

pθ(τ )
∇θipθ(τ )

]
= E [∇θi log pθ(τ )r(τ )]

•Suggests PGMs do not make full use of data.
•Past work: greedy hill climbing on Ĵ [6]
•Our approach: find local optima of Ĵ through nu-

merical optimization.
– Use effective sample size (ESS) to limit search

areas of θ space with many samples [5]
– Estimate Fisher information matrix and use it

to estimate “natural” numerical gradient [1, 4]
– Do optimal line search (e.g. Armijo rule) [2]
– Use general minimum variance baseline for

estimating Ĵ .

Importance Sampling and PGMs

• Let Φ = ∇θ log pθ(τ ). An estimator for a scalar or
vector-valued quantity admits a unbiased base-
line of the form Ep

[
bTΦ

]
or E [BΦ], respectively,

since
∫
τ pθ(τ )∇θ log pθ(τ )dτ = 0.

•Extends naturally to IS setting.
•An unbiased estimator for Ĵ is

Ĵ = Eq

[
pθ(τ )

qθ(τ )

(
r(τ )− bTΦ

)]
•Choose b by minimizing variance.

b = Eq

[
p(τ )2

q(τ )2
ΦΦT

]−1

Eq

[
p(τ )

q(τ )
Φr(τ )

]
– b is the product of an (IS) inverse-Fisher infor-

mation matrix term and an (IS) REINFORCE
gradient, i.e. it is the IS natural gradient.

• b is a product of expectations: in principle, can
reapply baseline trick indefinitely. However, in-
creases model complexity. Our approach uses
the baseline trick once more to get min variance
estimator for the REINFORCE term.

Eq

[
p(τ )

q(τ )
(r(τ )I −B) Φ

]
– Compute B using least squares.
• Introducing baselines increases model complex-

ity. Requires more samples (or IS).

A Generalization of Min Variance Baseline

Input: policy πθ, θ0
θ ← θ0, paths← {}, history ← [θ0]
repeat

1. Draw samples from real system
for 1 : M do
paths← add path(paths, sample path(πθ))

end for

2. Use IS, optimal baseline(s) to learn value function

Ĵ(θ)← Eq

[
pθ(τ )
q
θh

(τ )
(r − bT∇θ log pθ(τ ))

]
3. Run gradient descent searches from all past θ’s
for 1 : N do
for all θ′ ∈ history do
g ← natural finite difference gradient step(Ĵ)

α← linesearch(Ĵ , g)
θ′← θ′ + αg

end for
end for
θ = arg maxθ′ Ĵ(θ′)
history ← update history(history, θ)

until convergence

Algorithm Summary

• x ∈ R4, u ∈ R, θ = (K, η) ∈ R5, η ∈ R

•Policy πθ(u|x) = N
(
Kx, 0.1 + 1

1+eη

)
•Reward is 0 inside target region, -2 if pole falls, -1 o.w.

•

•Above right: cart position x under initial policy, policy learned
with our approach, and policy learned with REINFORCE.
Black lines show the target region where cost is 0.

Cartpole Setup

•REINFORCE uses optimal baseline and RPROP [9]
• IS REINFORCE is natural extension of REINFORCE, using

IS to estimate gradient directly.
• (left) IS and optimal baseline do not account for the perfor-

mance improvement over REINFORCE.
• (right) In practice, to minimize the number of trials on real

hardware, we perform a policy update after every trial.
•Our approach performs well updating every trial. After 100

time steps we nearly equal performance after 500 time steps.
•REINFORCE gradient estimate is too noisy with 1 sample.

Experimental Results

•PGMs are a special case of gradient descent over the Ĵ .
•Better approaches: use global search, not gradient descent
•Baselines used in PGMs are a special case of a general vari-

ance reduction technique.
– Minimum variance unbiased estimators (MVUE) can be

computed for estimating Ĵ .
– Optimal baselines are themselves expectations, which can

be given their own MVUE baselines.
– Exploring applications of this technique to other domains
•Requires significantly fewer trials to learn good controllers for

standard RL benchmark.

Conclusions
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