A Connection Between Importance Sampling and Likelihood Ratio
Policy Gradients

Introduction

e Likelihood ratio policy gradient
methods (PGMs) are state of
the art techniques for reinforce-
ment learning in continuous state
spaces.

e Model-free learning with strong
convergence guarantees

e PGMs have been successfully ap-
plied to a variety of difficult robotics
problems, e.g.

— Learning to hit balls with a bat [8]
— Learning legged robot gaits [10]

Problem Formulation

e States z; € R”

e Actions u; € R™

e Reward function r(z;, u;) € R
e Discount factor ~.

e Sample trajectories 7 by running
policy my.

e Given a parameterized policy rep-
resentation my(u¢|z;), optimize dis-
counted sum of reward
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Policy Gradient Methods

e Gradient descent technique: pick
an initial starting 6, and update

0.1 = 0) + O%V@J((gk)

e Can choose stepsize adaptively
(RPROP) [9]

e Given sampled trajectories 7¢, can
compute Monte Carlo estimates of
the gradient (REINFORCE)

VyJ(0) = E[Vglog pe(T)r(T)]

e Can add zero-mean baseline term
to reduce variance and improve
convergence rate.

VoJ(0) = E|Vglogpe(T)(r(r) —b)]

e Optimal minimum variance base-
line has been shown to greatly im-
prove convergence speed. [7]

Importance Sampling

e Importance sampling reweights old
samples to create unbiased esti-
mators for novel, arbitrary policies.

e Given sample trajectories 7, esti-
mate value function
= po(T) }
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e Below, a contour plot of J for the

first 2 cartpole policy parameters.
Sample trajectories are marked in
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Importance Sampling and PGMs

e Novel observation: given a single sample trajec-
tory, the gradient of J is the REINFORCE gradi-
ent direction.
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e Suggests PGMs do not make full use of data.
e Past work: greedy hill climbing on J [6]

e Our approach: find local optima of .J through nu-
merical optimization.

— Use effective sample size (ESS) to limit search
areas of 6 space with many samples [5]

— Estimate Fisher information matrix and use it
to estimate “natural” numerical gradient [1, 4]

— Do optimal line search (e.g. Armijo rule) [2]

—Use general minimum variance baseline for
estimating J.

A Generalization of Min Variance Baseline

o lLet & = Vylogpy(7). An estimator for a scalar or
vector-valued quantity admits a unbiased base-
line of the form E, [b' ®| or E[BP], respectively,
since [_py(T)Vylog py(T)dT = 0.

e Extends naturally to IS setting.

e An unbiased estimator for J is
7 PG(T) T }
J=F r(rt) — b P
! LJ@(T ) (r(7) )
e Choose b by minimizing variance.
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—b is the product of an (IS) inverse-Fisher infor-
mation matrix term and an (IS) REINFORCE
gradient, i.e. it is the IS natural gradient.

e b is a product of expectations: in principle, can
reapply baseline trick indefinitely. However, In-
creases model complexity. Our approach uses
the baseline trick once more to get min variance

estimator for the REINFORCE term.
p(T)
E,|—=(r(r)l — B)d
q C_I(T)( ( ) )
— Compute B using least squares.

e Introducing baselines increases model complex-
ity. Requires more samples (or |S).

Algorithm Summary

Input: policy my, 6
0 «— 0y, paths < {}, history « [0
repeat

1. Draw samples from real system

for1: M do

paths < add _path(paths, sample path(my))
end for

2. Use IS, optimal baseline(s) to learn value function

J(6) — Eq | 22475 (r — b Vglogpy(r))
3. Run gradient descent searches from all past 0’s
for1: N do
for all 9 € history do R
g < natural_finite_dif ference_gradient _step(J)
o — linesearch(j, q)
0 — 0+ ag
end for
end for R
§ = arg maxg J(6")
history < update_history(history, 0)
until convergence

Cartpole Setup

ez cRYueR,0=(K,n)eR,neR
e Policy mp(u|z) = N (Kz,0.1 + )
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e Reward is 0 inside target region, -2 if pole falls, -1 o.w.
Controller Simulation
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e Above right: cart position = under initial policy, policy learned
with our approach, and policy learned with REINFORCE.
Black lines show the target region where cost is 0.

Experimental Results
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REINFORCE uses optimal baseline and RPROP [9]

S REINFORCE is natural extension of REINFORCE, using
S to estimate gradient directly.

o (left) IS and optimal baseline do not account for the perfor-
mance improvement over REINFORCE.

e (right) In practice, to minimize the number of trials on real
hardware, we perform a policy update after every trial.

e Our approach performs well updating every trial. After 100
time steps we nearly equal performance after 500 time steps.

e REINFORCE gradient estimate is too noisy with 1 sample.
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Conclusions

e PGMs are a special case of gradient descent over the J.
e Better approaches: use global search, not gradient descent

e Baselines used in PGMs are a special case of a general vari-
ance reduction technique.

—Minimum variance unbiased estimators (MVUE) can be
computed for estimating J.

— Optimal baselines are themselves expectations, which can
be given their own MVUE baselines.

— Exploring applications of this technique to other domains

e Requires significantly fewer trials to learn good controllers for
standard RL benchmark.
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