
Rapidly-Exploring Roadmaps:
Weighing Exploration vs. Refinement in Optimal Motion Planning

Ron Alterovitz, Sachin Patil, and Anna Derbakova

Abstract— Computing globally optimal motion plans requires
exploring the configuration space to identify reachable free
space regions as well as refining understanding of already
explored regions to find better paths. We present the rapidly-
exploring roadmap (RRM), a new method for single-query
optimal motion planning that allows the user to explicitly
consider the trade-off between exploration and refinement.
RRM initially explores the configuration space like a rapidly
exploring random tree (RRT). Once a path is found, RRM uses
a user-specified parameter to weigh whether to explore further
or to refine the explored space by adding edges to the current
roadmap to find higher quality paths in the explored space. Un-
like prior methods, RRM does not focus solely on exploration or
refine prematurely. We demonstrate the performance of RRM
and the trade-off between exploration and refinement using two
examples, a point robot moving in a plane and a concentric tube
robot capable of following curved trajectories inside patient
anatomy for minimally invasive medical procedures.

I. INTRODUCTION

Motion planning requires exploring the configuration
space of a robot or agent in order to find a sequence of feasi-
ble actions that maneuver the robot or agent around obstacles
to a goal. However, not all motion plans are equal. In optimal
motion planning, the objective is to find the best solution that
optimizes relevant criteria, such as a path of minimum length,
greatest clearance from obstacles, or minimum control effort.
With improvements in computation speed and algorithms, we
can strive to compute optimal motion plans in cases where
in the past even feasible solutions were difficult to obtain.

The most successful approaches to motion planning in
practice involve building discrete representations (trees or
roadmaps) of the free space, the subset of the robot’s
configuration space where it can move without collision with
obstacles. When a start and goal are specified and we are
only concerned about a single query, building this discrete
representation of the robot’s free space introduces an inherent
trade-off between exploration and refinement.

Exploration seeks to find free space where the robot can
travel without colliding with obstacles. In contrast, refine-
ment seeks to improve understanding of the configuration
space in a local region. Refinement introduces multiple
pathways to reach the same configuration, enabling selection
of a path through a known free space region that optimizes
some criteria. Computing a globally optimal plan in general
requires both exploration and refinement.

We introduce a new motion planning method, the rapidly-
exploring roadmap (RRM), that allows the user to explicitly

R. Alterovitz, S. Patil, and A. Derbakova are with Department of
Computer Science, University of North Carolina at Chapel Hill, Chapel
Hill, NC 27517, USA {ron,sachin,anya}@cs.unc.edu

Fig. 1. Exploration seeks to find new regions of free space while refinement
seeks to find better paths within the explored regions. In the RRM above,
exploration could identify an entirely new region of free space, while
refinement could reduce the length of the path to the goal. RRMs allow the
user to explicitly specify the trade-off between exploration and refinement
with the guarantee that the planner will return the optimal solution with
probability 1 as computation time is allowed to increase.

balance exploration and refinement while converging to an
optimal plan. Our focus is on optimal single-query motion
planning in constrained spaces. We are given start and goal
configurations, obstacle locations, properties of the robot or
agent, and a quality metric with which to evaluate plans.
Our objective is to compute an optimal plan from the start
configuration to the goal based on the given quality metric.
RRM works for quality metrics that are additive over a path,
such as distance. In computing a plan, RRM initially only
iteratively explores the configuration space. Once exploration
finds a feasible path from the start to the goal, RRM uses
a user-specified parameter to weigh whether to (1) explore
for new free space regions, or (2) refine the current explored
space to find a solution that is closer to optimal. The method
guarantees, under certain assumptions, that the computed
path will converge to the globally optimal solution with
probability 1 as the number of iterations increases.

RRMs combine ideas from the two most popular
sampling-based motion planners: probabilistic roadmaps
(PRMs) and rapidly-exploring random trees (RRTs) [5], [15].
For both PRMs and RRTs, the probability that the method
fails to find a feasible solution (when one exists) decreases
exponentially with the number of iterations [16]. However,
Karaman and Frazzoli proved that RRTs will fail to return
an optimal solution with probability 1 [11]. RRM combines
the rapid exploration property of RRTs with the ability to
optimize paths over a roadmap as in PRMs, allowing us to
quickly find optimal solutions for single-query problems. As
shown in Fig. 1, the RRM is represented using a graph in
configuration space. In RRMs, exploration corresponds to
sampling the free space and expanding the graph toward the

sample in an RRT, tree-like manner. Refinement corresponds
to connecting existing samples using additional edges to
build a roadmap over which an optimal path can be selected.

Since collision detection in complex environments is a
computationally expensive step in sampling-based planning,
RRM strives to minimize collision checks and avoid any
duplication. This is facilitated by separating exploration from
refinement; there is more benefit in refining nodes along a
path to the goal than nodes on explored sub-trees that cannot
reach the goal. This is in contrast to prior sampling-based
methods such as the original PRM [12] and to more recent
optimal methods such as RRT* [11] that deterministically
perform collision detections in all explored regions of the
configuration space regardless of whether these regions can
be part of the final optimal solution.

We first demonstrate the potential of RRM for a point
robot moving on a plane. We then apply RRM to compute
motion plans for a concentric tube robot, a device composed
of nested nitinol tubes that can be controlled to follow curved
paths through open air. These devices have the potential to
assist physicians performing minimally invasive surgical pro-
cedures in constrained anatomical spaces such as the trachea
and bronchi. By explicitly considering the trade-off between
exploration and refinement, RRM can provide physicians
with the flexibility to best utilize available computation time
based on the task at hand.

II. RELATED WORK

Randomized motion planning algorithms such as RRTs
and PRMs have become increasingly popular in recent
years [5], [15]. Single-query planners such as RRTs [16]
focus purely on exploration and make no effort at refine-
ment, a necessary step for computing optimal motion plans.
Variants of the RRT algorithm have employed heuristics to
optimize the quality of the solution during planning [25],
[6] but do not provide optimality guarantees. Multi-query
planners such as PRMs [12] explore (via sampling) and refine
(via adding multiple edges per sample) at every iteration but
result in unnecessary exploration of the entire configuration
space and a large number of wasteful collision checks for
single-query problems. Extensions such as Fuzzy PRM [19],
Lazy PRM [2], and C-PRM [24] perform exploration and
refinement as distinct phases of the planning process, but do
not balance the two within a unified framework. RRM com-
bines the benefits of RRTs and PRMs and allows balancing
exploration and refinement.

Guided exploration strategies in the workspace and con-
figuration space have been successfully used to bias future
samples [7], [1], [9], [27], [4], [10]. Many of these strategies
could be directly incorporated into the exploration iterations
of RRMs. Rickert et al. [21] propose an exploring/exploiting
tree (EET) to balance between exploration of the configu-
ration space and exploiting the results of exploration using
potential fields but do not consider path optimality. Many
post-processing methods have been developed to improve the
quality of jerky, unoptimized paths typically obtained from
randomized planners [3], [13], [8], [20]. These approaches

are tailored for a specific criterion and only refine the
path within its homotopy class. In contrast, our approach
computes, in the limit, an optimal path across homotopy
classes without requiring a post-processing refinement step.

Karaman and Frazzoli [11] propose an extension of the
RRT algorithm called RRT* to provide optimality guaran-
tees. The RRT* algorithm constantly refines, resulting in
unnecessary collision checks for pathways that have little
or no chance of reaching the goal. Our approach can be
thought of as a lazy variant of the RRT* algorithm that
refines pathways starting from homotopic solutions that reach
the goal to decrease the number of collision checks while still
retaining optimality guarantees.

A different set of approaches that offer optimality guar-
antees apply graph search algorithms (such as A*) over a
discretization of the configuration space [15], [17]. These
methods only ensure optimality up to the discretization
resolution, and the computational complexity grows expo-
nentially with the dimensionality of the configuration-space.

III. ALGORITHM

A. Notation and Problem Definition

Let C ∈ Rd be the configuration space of the robot and
Cfree ⊆ C denote the subspace of the configuration space
for which the robot is not in collision with an obstacle. Let
q ∈ C denote a configuration of the robot. The RRM planner
requires as input the start configuration of the robot, qinit

and a set of goal configurations, Qgoal ⊆ Cfree.
Similar to motion planning algorithms like PRM and RRT,

RRM requires as input the definition of the certain problem-
specific functions. Given a set of configurations V and any
two configurations q1, q2 ∈ V , collision free(q1, q2)
returns false if the path (computed by a local planner
[5]) from q1 to q2 collides with an obstacle and true

otherwise. The function cost(q1, q2) specifies the cost as-
sociated with moving between two configurations q1 and
q2, which can equal control effort, Euclidean distance,
or any problem-specific user-specified metric. The func-
tion nearest neighbor(V, q) returns the nearest neigh-
bor to configuration q using some distance metric and
nearest neighbors(V, q) returns a set of neighbors within
some distance of q. We note that for computational efficiency,
the distance metric used by the nearest neighbor functions
does not necessarily have to equal the metric used by the
cost function.

The objective of standard motion planning is to find a path
Π : (q0, q1, q2, . . . , qend) such that q0 = qinit and qend ∈
Qgoal and Π lies in Cfree. The objective of optimal motion
planning is to find a feasible path such that the cost of the
path is minimized, where the cost of a path is defined to be
the summation or maximum of the costs of sequential pairs
of configurations along the path Π.

The RRM algorithm also requires an additional parameter,
wrefine, that weighs exploration versus refinement. Setting
this parameter to 0 results in exploration only, which is
equivalent to a standard RRT. Setting this parameter to 1
causes the RRM to refine immediately whenever possible,

Alg. 1 RRM plan: Build the RRM data structure and compute
a path.
Input:

qinit: initial configuration, Qgoal: goal region
dstep: maximum size of edge for RRT expansion
wrefine: weight of refinement relative to exploration,

wrefine ∈ [0, 1)
Output:

P : Sequence of configurations defining a collision-free
path from qinit to q ∈ Qgoal

1 counter← 0
2 V ← {qinit}
3 prev[qinit]← nil
4 counter add[qinit]← nil
5 counter refine[qinit]← nil
6 E ← ∅; U ← ∅; S ← ∅
7 do
8 w ← uniform random number in range[0, 1]
9 if |U | = 0 or w ≥ wrefine

10 RRM explore()
11 else
12 RRM refine()
13 end if
14 until user stops process
15 P ← shortest path in weighted directed graph

G = (V,E)
16 return P

which slows does the exploration process. As discussed in
Sec. III-D, appropriately setting wrefine will guarantee that
RRM will return the optimal plan with probability 1 as the
number of iterations increases.

B. RRM Algorithm

The RRM R is defined by the tuple G, where G = (V,E)
is a weighted directed graph with vertices V and weighted
edges E. A vertex represents a configuration as well as
additional information that will be described below. The
graph is directed because we do not assume that moving
from qi to qj is equivalent to moving from qj to qi (e.g.
moving forward may incur a different cost from moving in
reverse).

We build the RRM using the algorithm RRM plan defined
in Alg. 1. Initially, the vertex set V contains only qinit. The
algorithm also maintains two global lists: U and S. U is the
set of vertices that should be refined but have not yet been
refined. S is the set of vertices that have already been refined.
The algorithm then enters a loop. If U is not empty, then the
algorithm explores the configuration space with probability
1−wrefine or refines the RRM with probability wrefine. The
algorithm iterates until the user stops the process.

The exploration algorithm RRM explore, defined in Alg.
2, proceeds similarly to an iteration of the original RRT
algorithm [15]. The algorithm generates a sample config-

Alg. 2 RRM explore: Expand a RRM by exploring.
Input:

Global variables G = (V,E), prev, dstep, U , S,
counter add, counter refine, and counter from
RRM plan

Output:
G = (V,E), prev, U , counter add, counter refine, and

counter are updated

1 qsample ← a randomly chosen configuration from
C

2 qnear ← nearest neighbor(V, qsample)
3 qnew ← the point along the straight line from

qnear to qsample that is at most distance
dstep away from qnear

4 if collision free(qnear, qnew)
5 V ← V ∪ {qnew}
6 E ← E ∪ {(qnear, qnew, cost(qnear, qnew)}
7 prev[qnew]← qnear

8 if qnew ∈ Qgoal

9 RRM mark(qnew)
10 Qgoal ← Qgoal ∪ {qnew}
11 end if
12 if qnear ∈ S
13 RRM mark(qnew)
14 end if
15 counter add[qnew]← counter + +
16 counter refine[qnew]←∞
17 end if
18 return

uration qsample, which in our implementation is a uni-
form random sample from C. We find the sample’s nearest
neighbor qnear in V . We then consider the edge that ex-
tends from qnear toward qsample up to a distance of dstep,
which is a user-specified constant. We define this edge as
(qnear, qnew, cost(qnear, qnew)). If this edge is collision free,
we add the new vertex qnew to V and the new edge to G.

If the newly added qnew is inside Qgoal, then we have
found a new feasible path from qinit to the goal. This new
feasible path may be in a new homotopic class, so we mark
for refinement all vertices on that path by adding them to U .
(We note that for computational efficiency we only need to
backtrack from qnew until we reach the first vertex in S or
U , adding vertices to U along the way.) We also add qnew

to U if its edge connects it to a vertex that is in S since
this new vertex is already adjacent to a refined vertex. This
procedure is handled by Alg. 3.

The refinement algorithm RRM refine, defined in Alg. 4,
randomly selects a configuration qrefine from U to refine.
The algorithm then finds the nearest neighbors of qrefine

and saves them to the set Qnear. In our implementation,
nearest neighbors returns all vertices within distance
dstep since we assume that dstep is the maximum distance
edge for which we are willing to conduct a collision check.

Alg. 3 RRM mark: Mark a path from a given configuration to
qinit for refinement.
Input:

q: configuration
Global variables G = (V,E), prev, U , and S

from RRM plan

Output:
Global variable U (the set of vertices waiting to be

refined) is updated

1 while q /∈ S and q /∈ U and q 6= nil
2 U ← U ∪ {q}
3 q ← prev[q]
4 end while
5 return

We alternatively can define a distance that decreases as the
number of vertices increases, as in Karaman et al. [11]. For
each configuration qnear in Qnear, the algorithm checks if
the edge from qrefine to qnear is collision-free and adds the
edge if possible. In doing this, we want to avoid duplicating
collision checks. We only call collision free if both the
following conditions are met:

1) The vertex qnear was not already refined (i.e. qnear /∈
S) or was refined before vertex qrefine was added. We
handle the latter check in O(1) computation time by
introducing a global counter. The global counter is
initialized at 0 and is incremented each time a vertex
is added or refined. Using vectors counter add and
counter refine, we maintain the appropriate counter
values for each vertex.

2) The edge was not already checked for collisions during
the exploration stage. The algorithm already performed
a collision check from prev[q] to q when adding q to
the graph.

By only checking collisions for edges that meet both of the
above criteria, we guarantee that each edge that should be
checked for collision is examined exactly once. We repeat the
above for the opposite direction edge from qnear to qrefine.
After an edge is added, we also check if the vertices should
be marked for refinement and added to set U using the same
requirements as during RRM explore.

The algorithm RRM plan iterates and adds configurations
and edges to the graph until the user stops the process. The
algorithm then computes and returns the shortest path in the
RRM graph using the user-specified cost metric.

C. Computational Complexity

Let k be the number of iterations that RRM plan ex-
ecutes before computing the shortest path. We note that
|V | ≤ k since at most k vertices can be added to the
graph, corresponding to the case where we always explore
and each exploration results in a collision-free edge being
added to the graph. We also note O(|E|) ≤ O(k2). In

Alg. 4 RRM refine: Expand a RRM by adding edges around
a configuration.
Input:

Global variables G = (V,E), Qgoal, prev,
counter refine, U , S, and counter from RRM plan

Output:
Global variables G = (V,E), U , S, counter refine, and

counter are updated

1 qrefine ← randomly chosen configuration from U
2 Qnear ← nearest neighbors(V, qrefine)
3 for each qnear ∈ Qnear

4 if (qnear /∈ S or counter refine[qnear]
< counter add[qrefine]) and
(qnear /∈ Qgoal or qrefine /∈ Qgoal)

5 if prev[qnear] = qrefine

6 RRM mark(qnear)
7 else if collision free(qrefine, qnear)
8 E ← E ∪ {(qrefine, qnear,

cost(qrefine, qnear))}
9 RRM mark(qnear)
10 end if
11 if prev[qrefine] = qnear

12 RRM mark(qnear)
13 else if collision free(qnear, qrefine)
14 E ← E ∪ {(qnear, qrefine,

cost(qnear, qrefine))}
15 RRM mark(qnear)
16 end if
17 end if
18 end for
19 counter refine[qrefine]← counter + +
20 U ← U\{qrefine}
21 S ← S ∪ {qrefine}
22 return

practice, |E| will be dependent on the exact implementation
of nearest neighbors.

Let D be the computational complexity of detecting if
a collision occurs as the robot moves between two con-
figurations for a distance up to dstep. We note that D
grows for environments with more complex obstacles and
is dependent on the collision detection algorithm used. Al-
though RRM refine and RRM explore make multiple calls
to RRM mark, no vertex is ever marked more than once. Thus,
the total computational complexity of RRM mark over the
entire execution of RRM build is capped at O(|V |). Also, we
can implement constant-time access to U and S by storing
these sets as lists and including pointers to entries in those
lists from each vertex in the graph. Hence, RRM explore

and RRM refine called by RRM plan have an asymptotic
expected complexity of O(|V |D) using brute-force nearest
neighbor searching. If nearest neighbors is restricted to
balls of volume proportional to log |V |/|V | [11] and kd-
trees or BBD-trees for nearest neighbor searching, then the

complexity is O(log |V | exp d + D log |V |).
The search at the end of RRM plan has computational

complexity O(|V | log |V |) for Dijkstra’s algorithm or other
similar shortest path algorithms, although this is dominated
by the prior k iterations. Hence, the algorithm RRM plan

has a total computational complexity of O(k2D) for brute
force nearest neighbor searching and an asymptotic expected
complexity of O(k log k exp d + kD log k) when nearest
neighbors are restricted to balls as specified above.

In comparison, the computational complexity of an RRT
is O(k2 + kD) for brute-force nearest neighbor searching
and O(k log k exp d + kD) for kd-trees or BBD-trees. The
only computational complexity overhead of RRM relative
to RRT is the additional collision detections for the extra
edges, which is required for optimal motion planning. The
worst case complexity of RRM is equivalent to the worst
case complexity of RRT* [11] when explicitly considering
the cost of collision checks but not counting the linear com-
plexity of propagating shortest paths during RRT* iterations
that rewire the tree.

D. Discussion

RRM retains the desirable exploration rate of the RRT
algorithm due to its RRT-like exploration. In addition, the
cost of an RRM path converges to the optimal feasible cost
with probability 1 under certain conditions as the number
of iterations increases. This property is the result of RRM
creating a connected graph with multiple pathways to any
configuration. For wrefine > 0.5 and when searching for
nearest neighbors in balls of radius dstep, as the number
of uniform random samples approaches infinity the resulting
RRM graph will be connected in the connected free space
containing the start configuration. The optimal cost path
will lie in this graph and will be discovered by the RRM
algorithm as the number of iterations approaches infinity. A
detailed analysis that considers obstacles in the configuration
space as well as nearest neighbor balls that shrink with itera-
tion count is provided by Karaman and Frazzoli [11]. Related
methods have also been used for analyzing PRMs [14].

For convergence to optimality, we require that the set
of vertices yet to be refined, U , does not grow at an
unbounded rate. For wrefine > 0.5, the expected rate at which
configurations are removed from U when |U | > 0 is greater
than the expected rate at which configurations are added,
thus guaranteeing convergence. For wrefine ≤ 0.5, our results
presented below look promising but more investigation is
needed to assess optimality guarantees.

Just as with RRTs, the effectiveness of RRM for a partic-
ular problem is dependent on the parameter dstep. Low dstep

can result in an excessive number of configurations being
added to the graph, which slows the method. A large dstep

can result in a large number of edges colliding with obstacles.
As with RRTs, we can consider a variable dstep obtained by
extending edges dynamically until collision [15].

Unlike prior methods which implicitly impose a weighting
between exploration and refinement, RRM allows the user to
select the weighting. For wrefine = 0, the RRM is equivalent

400 iterations 800 iterations

(a) wrefine = 0.0

(b) wrefine = 0.2

(c) wrefine = 0.5

Fig. 2. (a) RRM for wrefine = 0.0, where the method is equivalent to an
RRT and only explores the space. Although the space is well explored by
800 iterations, the resulting path is suboptimal due to the lack of refinement
to take advantage of the exploration. (b) RRM for wrefine = 0.2. The
method explores less of the space than the RRT, but the small amount of
refinement finds a near-optimal solution by 800 iterations that is homotopic
to the true optimal solution. (c) RRM for wrefine = 0.5, where exploration
and refinement are balanced and the method converges toward the optimal
solution.

to an RRT and only explores the configuration space. For
wrefine = 1, the RRM is equivalent in the limit to RRT*,
although RRM does not begin refinement until an initial
solution is found in order to improve algorithm performance
when little computation time is available. In future work,
we will investigate automatically setting and tuning the
weighting. In particular, we will investigate the impact of
narrow passages, which require comparatively more explo-
ration, on the optimal setting of wrefine. We will also consider
approaches that compare the decrease in entropy (increase in
information) [4] between recent exploration and refinement
steps to determine which step is more likely to decrease
entropy.

IV. IMPLEMENTATION AND EVALUATION

We apply the RRM framework to two problems. The first
problem, which we describe in Sec. IV-A, is to find a path
for a point robot moving on a plane amongst obstacles. We
then apply RRM in Sec. IV-B to compute motion plans

1
1.1
1.2
1.3
1.4
1.5
1.6

200 400 600 800 1000 1200

C
os

t r
at

io
 to

 o
pt

im
al

Iterations

0
100
200
300
400
500
600

200 400 600 800 1000 1200

R
ef

in
ed

 v
er

tic
es

 |S
|

Iterations

0

0.05

0.1

0.15

0.2

200 400 600 800 1000 1200

C
om

pu
ta

tio
n

tim
e

(s
)

Iterations

0
0.1
0.2
0.3
0.5
0.8
1

Fig. 3. For the point robot example, we show the ratio of the cost of the computed plan relative to ground-truth optimality for different values of wrefine,
averaged over 100 runs. We also show the number of vertices refined, which is correlated to collision detection effort, and the total computation time for
roadmap construction and computing shortest paths. By focusing refinement along known pathways to the goal, small amounts of refinement can result in
close to optimal plans and require much less computation time.

for a concentric tube robot capable of following curved
trajectories. All experiments were performed on a 2.2 GHz
Intel Core 2 Duo laptop.

A. RRM for a Point Robot

We consider a holonomic point robot that moves on a
plane. We define the workspace as a rectangle and define
obstacles as polygons.

We execute the RRM algorithm for different weights of
wrefine between 0 and 1 and show example runs in Fig. 2.
In Fig. 3, we show the ratio of the cost of the computed
plan relative to ground-truth optimality averaged over 100
runs. The results converge toward the optimal solution for
low values of wrefine. Since RRM focuses refinement along
known pathways to the goal, small amounts of refinement
can result in close to optimal plans even for values of wrefine

as low as 0.1, at the benefit of only spending time refining
a small fraction of the sampled vertices.

We also show the number of vertices refined, which is
correlated to collision detection effort, as well as computation
times. For an equal number of iterations, increasing wrefine

requires more computation time since the computational cost
of a refinement operation is greater than an exploration
operation. Combining the results in the cost ratio graph and
the computation time graph suggests that refinement can be
used sparingly (e.g. use a low value of wrefine) to obtain
near optimal solutions at substantially lower computation
cost than continual refinement as is done in RRT*.

B. RRM for a Concentric Tube Robot

To demonstrate the potential of RRM for higher dimen-
sional configuration spaces, we apply RRM to a concentric
tube robot. These needle-like robots are composed of nested
nitinol tubes and can be controlled to follow curved paths
through open air as well as soft tissues [26], [23], [18].
These devices have the potential to assist physicians in
performing minimally invasive surgical procedures by ma-
neuvering through constrained anatomical spaces to provide
surgical access to clinical targets previously inaccessible
using needle-like devices.

Each tube of the concentric tube robot, which consists
of a straight transmission segment followed by a pre-bent
segment, can be telescoped and axially rotated with respect
to the other tubes. A device containing N tubes thus has

2N degrees of freedom. As the tubes rotate and translate
within one another, the global shape of the device changes.
We compute this shape (i.e. forward kinematics) using a
model that considers the stiffness and torsional energy of
the interacting tubes and minimizes energy [22].

Unlike bevel-tip steerable needles that have been well
studied, the motion of concentric tube robots cannot be
modeled with high accuracy solely using the tip pose since
the entire shaft shape changes with each configuration change
[22]. Prior work on motion planning for concentric tube
robots has not considered these global shape changes [18].

As a proof-of-concept, we apply RRM to a N = 3-tube
robot as shown in Fig. 4. We consider a tubular environ-
ment with protrusions, inspired by what a physician would
encounter when performing targeted biopsies or localized
radiation cancer treatment in the trachea or bronchi. We
consider the objective of minimizing robot motion, which
we quantify by the integral of the distance moved by
evenly spaced points along the robot’s shaft. We plan to
consider other objectives, such as maximizing clearance from
obstacles, in future work. We note that this single-query
motion planning problem is not well suited for a PRM
solution due to the highly constrained workspace; over 80%
of configuration space samples are in collision due to contact
with the cylinder, and hence are not feasible from the given
start configuration.

We executed the RRM algorithm for 5000 iterations for
wrefine = 0, 0.2, and 0.5, which required 33, 61, and 73
seconds, respectively. The objective values for wrefine = 0.2
and wrefine = 0.5 were both 32.1% better than the RRT
equivalent wrefine = 0. For 10,000 iterations, the objective
value for the RRT equivalent did not change and the values
for wrefine = 0.2 and wrefine = 0.5 were 39.6% and 40.2%
better than the RRT equivalent, respectively. Computation
times in seconds increased to 86 for wrefine = 0, 166 for
wrefine = 0.2, and 183 for wrefine = 0.5. We illustrate
snapshots of a plan in Fig. 4.

V. CONCLUSION

Computing globally optimal motion plans requires explor-
ing the configuration space to identify reachable free space
regions as well as refining understanding of already explored
regions to find better paths. We presented the rapidly-
exploring roadmap (RRM), a new method for single-query

Fig. 4. Snapshots from an RRM motion plan for a concentric tube robot.
The workspace is represented as a tubular environment with protrusions, as
would arise in anatomical structures such as tracheae and bronchi.

optimal motion planning that allows the user to explicitly
consider the trade-off between exploration and refinement.
RRM initially explores the configuration space like an RRT.
Once a path is found, RRM uses a user-specified parameter to
weigh whether to (1) explore further to learn the free space,
or (2) refine the explored space by adding edges to the current
roadmap to enable finding higher quality paths. Exploration
seeks to find new regions of free space while refinement
seeks to find better paths within the explored regions.

We demonstrated the performance of RRM and the trade-
off between exploration and refinement. In the first example,
we applied RRM to plan motions for a point robot moving
in a plane and show that properly weighing exploration and
refinement can lead to more quickly finding optimal paths. In
the second example, we applied RRM to plan motions for a
concentric tube robot whose curved shape can be controlled
to reach a target in a constrained space by inserting and
rotating its constituent tubes.

In future work, we will investigate automatically setting
and tuning wrefine based on workspace information and en-
tropy reduction of exploration and refinement steps. We will
also consider new sampling strategies based on ideas from
the vast PRM/RRT literature. We also plan to investigate new
applications of single-query optimal motion planning where
RRM can help balance the trade-off between exploration and
refinement.

VI. ACKNOWLEDGEMENT

This work was supported in part by the US Na-
tional Science Foundation under award IIS-0905344 and
by the National Institutes of Health (NIH) under grant #
R21EB011628. The authors thank Nate Dierk for creating
visualizations of the concentric tube robots and Lisa Lyons
for implementing concentric tube shape computation.

REFERENCES

[1] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo,
“OBPRM: An obstacle-based PRM for 3D workspaces,” in Robotics:
The Algorithmic Perspective: 1998 WAFR, P. Agarwal et al., Eds.
Natick, MA: AK Peters, Ltd., 1998, pp. 156–168.

[2] R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), 2000, pp. 521–528.

[3] O. Brock and O. Khatib, “Elastic strips: A framework for motion
generation in human environments,” Int. J. Robotics Research, vol. 21,
no. 2, pp. 1031–1052, 2002.

[4] B. Burns and O. Brock, “Toward optimal configuration space sam-
pling,” in Proc. Robotics: Science and Systems, Cambridge, MA, June
2005.

[5] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. MIT Press, 2005.

[6] D. Ferguson and A. Stentz, “Anytime RRTs,” in Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2006, pp. 5369–5375.

[7] R. Geraerts and M. Overmars, “Sampling and node adding in prob-
abilistic roadmap planners,” in Journal of Robotics and Autonomous
Systems (RAS), vol. 54, 2006, pp. 165–173.

[8] ——, “Creating high-quality paths for motion planning,” in Int. J.
Robotics Research, vol. 26, 2007, pp. 845–863.

[9] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling
narrow passages with probabilistic roadmap planners,” in Proc. IEEE
Int. Conf. Robotics and Automation (ICRA), 2003, pp. 4420–4426.

[10] L. Jaillet, A. Yershova, S. M. LaValle, and T. Siméon, “Adaptive
tuning of the sampling domain for dynamic-domain RRTs,” in Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2005,
pp. 2851–2856.

[11] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” in Proc. Robotics: Science and Systems,
2010.

[12] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Proba-
bilistic roadmaps for path planning in high dimensional configuration
spaces,” IEEE Trans. Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[13] J. Kim, R. Pearce, and N. M. Amato, “Extracting optimal paths from
roadmaps for motion planning,” in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), 2003, pp. 2424–2429.

[14] A. L. Ladd and L. Kavraki, “Measure theoretic analysis of probabilistic
path planning,” IEEE Trans. Robotics and Automation, vol. 20, no. 2,
pp. 229–242, 2004.

[15] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[16] S. M. LaValle and J. James J. Kuffner, “Randomized kinodynamic
planning,” Int. J. Robotics Research, vol. 20, no. 5, pp. 378–400, May
2001.

[17] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,
“Anytime search in dynamic graphs,” Artificial Intelligence Journal,
vol. 172, no. 14, pp. 1613–1643, 2008.

[18] L. A. Lyons, R. J. Webster III, and R. Alterovitz, “Planning active
cannula configurations through tubular anatomy,” in Proc. IEEE Int.
Conf. Robotics and Automation (ICRA), May 2010, pp. 2082–2087.

[19] C. L. Nielsen and L. E. Kavraki, “A two level fuzzy PRM for
manipulation planning,” in Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2000, pp. 1716–1721.

[20] B. Raveh, A. Enosh, and D. Halperin, “A little more, a lot better:
Improving path quality by a simple path merging algorithm,” arxiv.org,
vol. abs/1001.2391, 2010.

[21] M. Rickert, O. Brock, and A. Knoll, “Balancing exploration and
exploitation in motion planning,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), May 2008, pp. 2812–2817.

[22] D. C. Rucker and R. J. Webster III, “Parsimonious evaluation of
concentric-tube continuum robot equilibrium conformation,” IEEE
Trans. Biomedical Engineering, vol. 56, no. 9, pp. 2308–2311, Sept.
2009.

[23] P. Sears and P. Dupont, “A steerable needle technology using curved
concentric tubes,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), Oct. 2006, pp. 2850–2856.

[24] G. Song, S. Thomas, and N. M. Amato, “A general framework
for PRM motion planning,” in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), 2003, pp. 4445–4450.

[25] C. Urmson and R. Simmons, “Approaches for heuristically biasing
RRT growth,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2003, pp. 1178–1183.

[26] R. J. Webster III, A. M. Okamura, and N. J. Cowan, “Toward active
cannulas: Miniature snake-like surgical robots,” in Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2006, pp. 2857–2863.

[27] Y. Yang and O. Brock, “Adapting the sampling distribution in PRM
planners based on an approximated medial axis,” in Proc. IEEE Int.
Conf. Robotics and Automation (ICRA), 2004, pp. 4405–4410.

