
Efficient Approximate Value Iteration for Continuous Gaussian POMDPs

Jur van den Berg1 Sachin Patil2 Ron Alterovitz2
1School of Computing, University of Utah, berg@cs.utah.edu.

2Dept. of Computer Science, University of North Carolina at Chapel Hill, {sachin, ron}@cs.unc.edu.

Abstract

We introduce a highly efficient method for solving continuous
partially-observable Markov decision processes (POMDPs)
in which beliefs can be modeled using Gaussian distributions
over the state space. Our method enables fast solutions to
sequential decision making under uncertainty for a variety
of problems involving noisy or incomplete observations and
stochastic actions. We present an efficient approach to com-
pute locally-valid approximations to the value function over
continuous spaces in time polynomial (O[n4]) in the dimen-
sion n of the state space. To directly tackle the intractabil-
ity of solving general POMDPs, we leverage the assumption
that beliefs are Gaussian distributions over the state space, ap-
proximate the belief update using an extended Kalman filter
(EKF), and represent the value function by a function that is
quadratic in the mean and linear in the variance of the belief.
Our approach iterates towards a linear control policy over the
state space that is locally-optimal with respect to a user de-
fined cost function, and is approximately valid in the vicinity
of a nominal trajectory through belief space. We demonstrate
the scalability and potential of our approach on problems in-
spired by robot navigation under uncertainty for state spaces
of up to 128 dimensions.

1 Introduction
Partially-observable Markov decision processes (POMDPs)
(Kaelbling, Littman, and Cassandra 1998) provide a prin-
cipled framework for sequential decision making under un-
certainty for a variety of tasks involving noisy or incomplete
observations and stochastic actions. The objective is to com-
pute a policy defined as an optimal action for each possible
belief in the state space such that the expected cost for com-
pleting the task is minimized. In this paper, we introduce a
highly efficient method for solving continuous POMDPs in
which beliefs can be modeled using Gaussian distributions
over the state space. Problems that fall in this subclass of
POMDPs span a variety of real-world applications, includ-
ing modeling eye-hand coordination (Erez and Smart 2010)
and navigating a robot toward a goal in the presence of mo-
tion uncertainty and noisy, incomplete sensing.

Computing exact solutions to general POMDPs, which
has been shown to be PSPACE complete (C. Papadim-
itriou 1987), requires computing a policy over an infinite-
dimensional belief space, the space of probability distribu-
tions over the (finite-dimensional) state space. For problems
involving discrete state, action, and/or observation spaces,
algorithms have been developed that use approximate value
iteration with point-based updates (Pineau, Gordon, and
Thrun 2003; Smith and Simmons 2004; Porta et al. 2006;

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Kurniawati, Hsu, and Lee 2008; Ong et al. 2010; Silver
and Veness 2010; Kurniawati et al. 2011; Bai et al. 2011).
For problems more naturally defined over continuous spaces
(e.g. robot navigation), discretizing the problem and us-
ing the aforementioned approaches leads to an exponential
growth in the number of states, inherently subjecting these
problems to the “curse of dimensionality”.

When considering continuous state and actions spaces, a
key challenge is creating an efficient representation of the
value function. The methods of (Thrun 2000; Brooks et
al. 2006; Hauser 2011) handle continuous state and action
spaces, but maintain a global (discrete) representation of the
value function over the belief space, which limits their ap-
plicability to small to medium sized domains. Another class
of methods avoids computation in the belief space by eval-
uating a large number of candidate trajectories in the state
space (Prentice and Roy 2009; van den Berg, Abbeel, and
Goldberg 2011; Bry and Roy 2011). These methods are not
ideal because planning in state space will not yield optimal
plans in the belief space.

For problems in which it is reasonable to model be-
liefs using Gaussian distributions, beliefs can be represented
in parameterized form (Miller, Harris, and Chong 2009;
Erez and Smart 2010; Platt et al. 2010; van den Berg,
Patil, and Alterovitz 2011). These methods handle continu-
ous state, action, and observation spaces and approximately
compute the value function in parametric form only in lo-
cal regions of the belief space, allowing for a running time
polynomial in the dimension n of the state space. These
methods consider a value function quadratic in the belief,
leading to an O[n7] running time when a local optimization
method such as differential dynamic programming (DDP)
is used in belief space (van den Berg, Patil, and Alterovitz
2011). Local approaches can be extended to non-Gaussian
beliefs (Platt et al. 2011) by using particle filters.

In this paper, we present a new method for computing lo-
cally optimal solutions to continuous POMDP’s in which
belief is modeled using Gaussian distributions. Our ap-
proach performs approximate value iteration over the be-
lief space with a running time that is only O[n4] in the di-
mension n of the state space, which considerably improves
upon prior work mentioned above and enables solving prob-
lems of higher dimensionality. The key insight that en-
ables this is the representation of the value function by a
function that is quadratic in the mean and linear in the
variance of the belief. This representation naturally aligns
with cost functions that are quadratic in the state since the
expected cost is then quadratic in the mean and linear in
the variance of the state (which follows from the identity
E[xTQx] = E[x]TQE[x] + tr[QVar[x]] for any stochastic
variable x). In addition, our approach does not make the (er-

roneous) assumption that maximum-likelihood observations
are received (which previous approaches do to obtain deter-
ministic belief dynamics) and accounts for stochastic belief
dynamics in the value iteration, resulting in more accurate
solutions to continuous POMDPs. In addition, our approach
handles hard constraints, e.g. obstacles in the environment.

We demonstrate the scalability and potential of our ap-
proach on problems with state spaces of up to 128 dimen-
sions, and on a problem inspired by robotics involving a
non-holonomic car-like robot navigating among obstacles.

2 Preliminaries and Definitions
We begin by defining POMDPs in their most general formu-
lation. Then, we specifically state the instance of the prob-
lem we discuss in this paper.

General POMDPs
Let X be the space of all possible states x of the agent, U be
the space of all possible control inputs u of the agent, and Z
be the space of all possible sensor measurements z the agent
may receive. The belief Xt is defined as the distribution of
the state xt at stage t given all past control inputs and sensor
measurements. Let B denote the space of all possible beliefs.
Given a control input ut and a measurement zt+1, the belief
is propagated using a Bayesian filter, which defines the be-
lief dynamics written as a function β : B× U× Z→ B:

Xt+1 = β[Xt,ut, zt+1]. (1)

Now, the challenge of the POMDP problem is to find a
control policy πt : B → U for all 0 ≤ t < `, where ` is the
time horizon, such that selecting the controls ut = πt[Xt]
minimizes the objective function:

Ez1,...,z`
[c`[X`] +

∑`−1
t=0 ct[Xt,ut]], (2)

for given immediate cost functions c` : B → R and ct :
B × U → R. The expectation is taken given the stochastic
nature of the measurements.

A general solution approach uses value iteration (Thrun,
Burgard, and Fox 2005), a backward recursion procedure, to
find the control policy πt for each stage t:

v`[X] = c`[X], (3)
vt[X] = min

u
(ct[X ,u] + E

z
[vt+1[β[X ,u, z]]]), (4)

where vt : B → R is called the value function for stage t.
The control policy πt[X] for stage t is defined by the min-
imizing control input u in Eq. (4). Computing this control
policy in practice is challenging, because in general the be-
lief space B is infinite-dimensional and the value function
cannot be expressed in parametric form.

Problem Definition
We will consider POMDPs in which the state, action, and
observation spaces are continuous and the belief Xt =
N [x̂t,Σt] is assumed to be a Gaussian distribution with
mean x̂t and variance Σt. Specifically, we assume that
X = Rn, U = Rm, and Z = Rk, and that we are given
a (non-linear) stochastic dynamics and observation model:

xt+1 = f [xt,ut] + m, m ∼ N [0,M [xt,ut]], (5)

zt = h[xt] + n, n ∼ N [0, N [xt]], (6)

where m and n are the motion and sensor noise, respec-
tively, drawn from independent Gaussian distributions with
zero mean and state and control input dependent variance.

Similar to the general POMDP case, our objective is to
find control policies ut = πt[x̂t,Σt] for all stages t that min-
imize the objective function of Eq. (2), for given immediate
cost functions c`[x̂,Σ] and ct[x̂,Σ,u]. In our case, we re-
quire in addition positive-(semi)definiteness for the Hessian
matrices of the immediate cost functions for all 0 ≤ t < `:

∂2c`
∂x̂∂x̂

≥ 0,
∂2ct
∂u∂u

> 0,

[
∂2ct
∂x̂∂x̂

∂2ct
∂x̂∂u

∂2ct
∂u∂x̂

∂2ct
∂u∂u

]
≥ 0, (7)

Further, we assume that the initial beliefN [x̂0,Σ0] is given.

3 Approach
Our approach computes a locally optimal solution to
the continuous, Gaussian POMDP problem as formulated
above. In our approach the belief dynamics are approxi-
mated using an extended Kalman filter, and the value func-
tion is approximated by a function that is quadratic in the
mean and linear in the variance of the belief, and that is
locally valid in the vicinity of a nominal trajectory though
the belief space. A belief-space variant of LQG (linear-
quadratic Gaussian) is used to perform value iteration, which
results in linear control policies over the state space that
are locally valid around the nominal trajectory. A locally-
optimal solution to the POMDP problem is then found by it-
eratively generating nominal trajectories through execution
of the control policies, and repeating the process until con-
vergence. We discuss each of these steps in this section, and
analyze the running time of our algorithm.

Belief Dynamics and the Extended Kalman Filter
Given a current belief N [x̂t,Σt], a control input ut, and a
measurement zt+1, the belief evolves using a Bayesian filter.
We approximate the Bayesian filter by an extended Kalman
filter (EKF), which is applicable to Gaussian beliefs. The
EKF is widely used for state estimation of non-linear sys-
tems (Welch and Bishop 2006), and uses the first-order ap-
proximation that for any vector-valued function f [x] of a
stochastic variable x we have:

E[f [x]] ≈ f [E[x]],

Var[f [x]] ≈ ∂f

∂x
[E[x]] ·Var[x] · ∂f

∂x
[E[x]]T . (8)

Given x̂t and Σt that define the current belief, the EKF
update equations are given by:

x̂t+1 = f [x̂t,ut] +Kt(zt+1 − h[f [x̂t,ut]]), (9)
Σt+1 = Γt −KtHtΓt, (10)

where

Γt = AtΣtA
T
t +M [x̂t,ut],

Kt = ΓtH
T
t (HtΓtH

T
t +N [f [x̂t,ut]])

−1,

At =
∂f

∂x
[x̂t,ut], Ht =

∂h

∂x
[f [x̂t,ut]].

Equations (9) and (10) define the (non-linear) belief dynam-
ics. The second term of Eq. (9), called the innovation term,
depends on the measurement zt+1. Since the measurement
is unknown in advance, the belief dynamics are stochastic.
Using Eq. (6) and the assumptions of Eq. (8), the innovation
term is distributed according to N [0,KtHtΓt].

In summary, the stochastic belief dynamics are given by:

x̂t+1 = f [x̂t,ut] + w, w ∼ N [0,W [x̂t,Σt,ut]], (11)
Σt+1 = Φ[x̂t,Σt,ut], (12)

where:

W [x̂t,Σt,ut] = KtHtΓt, Φ[x̂t,Σt,ut] = Γt −KtHtΓt.

Note that in the deterministic part of the belief dynamics, the
mean x̂t+1 is not a function of the variance Σt. Also, only
the evolution of the mean in the belief dynamics is stochas-
tic. These precise conditions allow us to maintain the in-
variant that the value function is quadratic in the mean, and
linear in the variance, as we see below.

Value Iteration
We perform value iteration backward in time to find a lo-
cally optimal control policy. We use a belief-space variant
of LQG for doing so, and approximate the value function
vt[x̂,Σ] as a function that is quadratic in the mean x̂ and lin-
ear in the variance Σ of the belief, and is approximately valid
around a given nominal trajectory in belief space. Let the
nominal trajectory be given as a series of beliefs (means and
variances) and control inputs (x̄0, Σ̄0, ū0, . . . , x̄`, Σ̄`, ū`)
such that x̄t+1 = f [x̄t, ūt] and Σ̄t+1 = Φ[x̄t, Σ̄t, ūt] for
t ∈ 0 . . . ` − 1 (we will discuss initialization and iterative
convergence of the nominal trajectory to a locally optimal
trajectory in the next subsection). The value function is then
represented by a function of the following form:

vt[x̂,Σ] ≈ st + 1
2 (x̂− x̄t)

TSt(x̂− x̄t) + sTt (x̂− x̄t) +

tTt vec[Σ− Σ̄t], (13)

with St ≥ 0. The notation vec[X] refers to the vector
formed by stacking the columns of the matrix X . The value
function is of a similar form as the cost-to-go function of
traditional LQG controllers, with the key difference that a
linear term in the variance of the state is added.

For the final time t = `, the value function v` (see Eq. (3))
is approximated by setting

s` = c`[x̄`, Σ̄`], S` =
∂2c`
∂x̂∂x̂

[x̄`, Σ̄`],

sT` =
∂c`
∂x̂

[x̄`, Σ̄`], tT` =
∂c`

∂ vec[Σ]
[x̄`, Σ̄`], (14)

which amounts to a second-order Taylor expansion for the
mean and a first-order Taylor expansion for the variance of
c` around the endpoint of the nominal trajectory. The value
functions and the control policies for the stages ` > t ≥ 0
are computed by backward recursion; combining Eqs. (4),
(11), (12), and (13) gives:

vt[x̂,Σ] = minu

(
ct[x̂,Σ,u] + Ew[st+1 +

1
2 (f [x̂,u] + w − x̄t+1)TSt+1(f [x̂,u] + w − x̄t+1) +

sTt+1(f [x̂,u] + w − x̄t+1) + tTt+1 vec[Φ[x̂,Σ,u]− Σ̄t+1]]
)

= minu

(
ct[x̂,Σ,u] + st+1 +

1
2 (f [x̂,u]− x̄t+1)TSt+1(f [x̂,u]− x̄t+1) +

sTt+1(f [x̂,u]− x̄t+1) + tTt+1 vec[Φ[x̂,Σ,u]− Σ̄t+1] +
1
2 vec[St+1]T vec[W [x̂,Σ,u]]

)
, (15)

where the last term in Eq. (15) follows from the fact that
E[xTQx] = E[x]TQE[x] + tr[QVar[x]] for any stochas-
tic variable x, and that tr[QX] = vec[QT]T vec[X]. It is
this term that ensures that the stochastic nature of the belief
dynamics is accounted for in the value iteration.

To approximate the minimizing value of u, we linearize
the belief dynamics, and quadratize (for the mean and con-
trol input) and linearize (for the variance) the immediate cost
function about the nominal trajectory. Given that x̄t+1 =
f [x̄t, ūt] and Σ̄t+1 = Φ[x̄t, Σ̄t, ūt], we get:

f [x̂,u]− x̄t+1 ≈ Ft(x̂− x̄t) +Gt(u− ūt), (16)

vec[Φ[x̂,Σ,u]− Σ̄t+1] ≈ Tt(x̂− x̄t) + Ut vec[Σ− Σ̄t] +

Vt(u− ūt), (17)

vec[W [x̂,Σ,u]] ≈ yt +Xt(x̂− x̄t) + Yt vec[Σ− Σ̄t] +

Zt(u− ūt), (18)

ct[x̂,Σ,u] ≈ qt +
1

2

[
x̂− x̄t

u− ūt

]T [
Qt PT

t
Pt Rt

] [
x̂− x̄t

u− ūt

]
+[

qt

rt

]T [
x̂− x̄t

u− ūt

]
+ pT

t vec[Σ− Σ̄t], (19)

where:

Ft =
∂f

∂x̂
[x̄t, ūt], Gt =

∂f

∂u
[x̄t, ūt],

Tt =
∂ vec[Φ]

∂x̂
[x̄t, Σ̄t, ūt], Ut =

∂ vec[Φ]

∂ vec[Σ]
[x̄t, Σ̄t, ūt],

Vt =
∂ vec[Φ]

∂u
[x̄t, Σ̄t, ūt], Xt =

∂ vec[W]

∂x̂
[x̄t, Σ̄t, ūt],

Yt =
∂ vec[W]

∂ vec[Σ]
[x̄t, Σ̄t, ūt], Zt =

∂ vec[W]

∂u
[x̄t, Σ̄t, ūt],

yt = vec[W [x̄t, Σ̄t, ūt]], qt = ct[x̄t, Σ̄t, ūt],

Qt =
∂2ct
∂x̂∂x̂

[x̄t, Σ̄t, ūt], qT
t =

∂ct
∂x̂

[x̄t, Σ̄t, ūt],

Rt =
∂2ct
∂u∂u

[x̄t, Σ̄t, ūt], rTt =
∂ct
∂u

[x̄t, Σ̄t, ūt],

Pt =
∂2ct
∂u∂x̂

[x̄t, Σ̄t, ūt], pT
t =

∂ct
∂ vec[Σ]

[x̄t, Σ̄t, ūt].

Filling in Eqs. (16)-(19) into Eq. (15), we get:

vt[x̂,Σ] ≈ min
u

(
et +

1

2

[
x̂− x̄t

u− ūt

]T[
Ct ET

t
Et Dt

][
x̂− x̄t

u− ūt

]
+[

ct
dt

]T [
x̂− x̄t

u− ūt

]
+ eTt vec[Σ− Σ̄t]

)
, (20)

where:

Ct = Qt + FT
t St+1Ft, Dt = Rt +GT

t St+1Gt,

Et = Pt +GT
t St+1Ft, et = qt+st+1+ 1

2 vec[St+1]Tyt,

cTt = qT
t + sTt+1Ft + tTt+1Tt + 1

2 vec[St+1]TXt,

dT
t = rTt + sTt+1Gt + tTt+1Vt + 1

2 vec[St+1]TZt,

eTt = pT
t + tTt+1Ut + 1

2 vec[St+1]TYt. (21)

The minimizing u is then found by taking the derivative with
respect to u and equating to 0. This gives the solution:

u = Lt(x̂− x̄t) + lt + ūt (22)

(where Lt = −D−1
t Et and lt = −D−1

t dt), which defines
the control policy u = πt[x̂,Σ] for stage t.

Filling Eq. (22) back into Eq. (20) and collecting terms
gives the value function vt[x̂,Σ] in the form of Eq. (13):

st = et + 1
2d

T
t lt, St = Ct + LT

t Et,

sTt = cTt + lTt Et, tTt = eTt . (23)

This recursion then continues by computing the control pol-
icy and value function for stage t− 1.

Iteration to a Locally-Optimal Control Policy
The above value iteration gives a control policy that is valid
in the vicinity of the given nominal trajectory. To let the
control policy converge to a local optimum, we iteratively
update the nominal trajectory using the most recent control
policy (Todorov and Li 2005; Jacobson and Mayne 1970).
Given the initial belief x̂0,Σ0, and an initial nominal trajec-
tory (x̄

(0)
0 , Σ̄

(0)
0 , ū

(0)
0 , . . . , x̄

(0)
` , Σ̄

(0)
` , ū

(0)
`) such that x̄(0)

0 =

x̂0, Σ̄
(0)
0 = Σ0, and x̄

(0)
t+1 = f [x̄

(0)
t , ū

(0)
t] and Σ̄

(0)
t+1 =

Φ[x̄
(0)
t , Σ̄

(0)
t , ū

(0)
t] for 0 ≤ t < `, we proceed as follows.

Given the nominal trajectory of the i−1’th iteration (start-
ing with i = 1), we find the control policy, i.e. the ma-
trices Lt and vectors lt, using the value iteration procedure
described above. We then compute the nominal trajectory
(x̄

(i)
0 , Σ̄

(i
0 , ū

(i)
0 , . . . , x̄

(i)
` , Σ̄

(i)
` , ū

(i)
`) of the i’th iteration by

setting x̄
(i)
0 = x̂0 and Σ̄

(i)
0 = Σ0 and forward integrating

the deterministic belief dynamics (for 0 ≤ t < `) using the
computed control policy:

ū
(i)
t = Lt(x̄

(i)
t − x̄

(i−1)
t) + lt + ū

(i−1)
t ,

x̄
(i)
t+1 = f [x̄

(i)
t , ū

(i)
t], Σ̄

(i)
t+1 = Φ[x̄

(i)
t , Σ̄

(i)
t , ū

(i)
t]. (24)

We then recompute the control policy, and reiterate. This
lets the control policy converge to a local optimum (Liao and
Shoemaker 1991).1 We note that upon convergence the vec-
tors lt have become 0, so the ultimate result of the algorithm
is a nominal trajectory and a linear control policy of the form
ut = πt[x̂t] = Lt(x̂t − x̄t) + ūt.

1To ensure that the iteration in fact converges to a locally-
optimal control policy, the algorithm is augmented with line search
such that a new nominal trajectory is only accepted if it has a lower
expected cost than the current nominal trajectory.

Time and Space Complexity Analysis
Let us analyze the running time of our algorithm. The di-
mension of the state is n, hence the size of its variance is
n2, and we assume that the dimensions of the control input
u and the measurement z are O[n]. Further, we assume that
the functions f and h can be evaluated in O[n2] time (this
is the case if they were linear), that the functions M and N
can be evaluated in O[n3] time (this is the case if they were
linear), and that the immediate cost functions ct can be eval-
uated in O[n2] time (this is the case if they were quadratic
in the mean and control input, and linear in the variance).

As a result, the functions Φ and W each take O[n3] time
to evaluate: they both involve performing a step of the ex-
tended Kalman filter, in which the Jacobians At and Ht are
computed. Using numerical differentiation, this takes O[n3]
time. The EKF further involves a constant number of multi-
plications and inversions of matrices of dimensionO[n×n],
which can also be done in O[n3] time.

In each step of the value iteration, the belief dynamics are
linearized and the immediate cost function is quadratized for
the mean and the control input, and linearized for the vari-
ance, which involves computing the Hessian and Jacobian
matrices of Eqs. (16)-(19). Using numerical differentiation,
the matrices Ft and Gt can be computed in O[n3] time and
Tt, Vt, Xt, Zt, Qt, Rt, and Pt can be computed in O[n4]
time. Computing the matrices Ut and Yt using numerical
differentiation would take O[n5] time, but it turns out that
for each of the n2 columns of Ut and Yt we can find an an-
alytic expression that takes O[n2] to evaluate. So also Ut

and Yt take O[n4] time to compute. The vectors yt, qt, and
rt are computed in O[n3] time, and pt takes O[n4] time to
compute. Lastly, the scalar qt is computed in O[n2] time.

Other computations in each step of the value iteration are
a constant number of multiplications and inversions of ma-
trices. The most costly operations are the multiplications of
an n2 × n2 matrix (Ut and Yt) with a vector of dimension
n2 (tt+1 and vec[St+1], respectively) in Eq. (21). This takes
O[n4] time. All other matrix multiplications and inversions
can be computed in at mostO[n3] time. Hence, the total run-
ning time for a single step of the value iteration takes O[n4]
time. A complete cycle of value iteration takes ` steps (`
being the time horizon), bringing the complexity to O[`n4].
The number of value-iteration cycles needed to obtain con-
vergence cannot be expressed in terms of n or `.

In the exposition of our algorithm, all matrices and vectors
that appear are of size at most O[n2], except for the matri-
ces Tt, Vt, Xt, and Zt, which are of dimension O[n2 × n]
(hence size O[n3]), and the matrices Ut and Yt, which are
of dimension n2 × n2 (hence size O[n4]). Since these ma-
trices are multiplied by a vector in all computations where
they appear, and since they are computed column by column
(each of O[n2] size), we never need to store them in mem-
ory in their entirety, but only a column at a time. Hence, the
total storage requirement of our algorithm is O[n2] per step
of the value iteration, and O[`n2] in total, since all matrices
Lt and Σ̄t (for 0 ≤ t < `) are stored in memory. We further
note that in our implementation we exploit the symmetry of
the matrices S, Σ, Φ, and W to reduce the running time and
storage requirements by a constant factor.

4 State Constraints and Obstacles
We presented our approach above for general immediate
cost functions c`[x̂,Σ] and ct[x̂,Σ,u] (with the require-
ments of Eq. (7)). In typical LQG-style cost functions, the
existence of constraints on the state (e.g. due to obstacles
in the environment) is not incorporated. To consider con-
straints and maximize the probability of satisfying them, we
incorporate constraints into the cost functions as follows.

Let F ⊂ X be the valid region of the state space defining
the constraints on the state. Given a belief x̂,Σ, the prob-
ability of satisfying the constraints, is given by the integral
over F of the probability-density function of N [x̂,Σ]. We
approximate this probability as follows. First, we choose a
maximal convex region in F around the current belief, re-
sulting in a set of linear constraints {aTi x < bi}. The prob-
ability that constraint i is satisfied is given by:

p[aTi x < bi] = cdf[(bi − aTi x̂)/
√
aTi Σai], (25)

where cdf : R→ R denotes the cumulative density function
of the standard Gaussian distribution N [0, 1]. The probabil-
ity that all constraints are satisfied is approximated by:

p[∀i : aTi x < bi] ≈
∏

i cdf[(bi − aTi x̂)/
√
aTi Σai], (26)

and this number should be maximized. To fit this objective
within the minimizing and additive nature of the POMDP
objective function, we note that maximizing a product is
equivalent to minimizing the sum of the negative logarithms
of the factors. Therefore, we add to ct[x̂,Σ,u] the term

f [x̂,Σ] = −
∑

i log[cdf[(bi − aTi x̂)/
√
aTi Σai]] (27)

to account for the probability of violating constraints. We
note that ∂2f

∂x̂∂x̂ ≥ 0, as is required by Eq. (7).

5 Results
We evaluate our approach in simulation in robot navigation
scenarios involving continuous state, action, and observation
spaces with stochastic dynamics and observation models
with state and control-dependent noise and spatially-varying
sensing capabilities. We consider two scenarios: (i) n-D
point robot with linear dynamics that uses beacon-based lo-
calization, and (ii) a 4-D under-actuated car-like robot with
second-order dynamics navigating in a 2-D environment.
The method was implemented in C++ and evaluated on a
3.33 Ghz Intel R© i7TM PC.

In the following experiments, we define the cost functions
in Eq. (2) to be:

c`[x̂`,Σ`] = x̂T
` Q`x̂` + tr[Q`Σ`], (28)

ct[x̂t,Σt,ut] = uT
t Rtut + tr[QtΣt] + f [x̂t,Σt], (29)

for given Qt ≥ 0 and Rt > 0. The term x̂T
` Q`x̂` +

tr[Q`Σ`] = E[xT
` Q`x`] encodes the final cost of arriving

at the goal, uT
t Rtut penalizes the control effort along the

trajectory, tr[QtΣt] penalizes the uncertainty in the state,
and f [x̂t,Σt] encodes the state constraint/obstacle cost (if
applicable).

(a) (b) (c)

Figure 1: n-D point robot navigating to the origin (shown in
green) in a unit hypercube with beacon-based localization (bea-
con shown in blue). (a) 1-D scenario where the beacon and initial
state of the robot are on either side of the goal. The variance is
indicated by the error bars. The robot goes to the beacon before
backtracking to the goal. (b) 2-D scenario, and (c) 3-D scenario,
where the robot localizes itself at the beacon before reaching the
goal with significantly reduced uncertainty (variance indicated us-
ing error ellipsoids).

n-D Point Robot With Beacon-Based Localization
To evaluate the scalability of our approach, we consider a
point robot with linear dynamics navigating in an n-D unit
hypercube centered at the origin, using beacon-based local-
ization. This gives the following stochastic dynamics model:

xt+1 = f [xt,ut] + m = xt + τut + m, (30)

where xt ∈ Rn is the robot’s position, ut ∈ Rn is the robot’s
velocity, τ is the time step, and the noise m ∼ N [0,M [ut]]
is scaled proportional to the control input ut.

We consider a partially-observable scenario where the
robot localizes itself using signal measurements from a bea-
con placed in the environment at location x̌. The signal
strength decays quadratically with the distance to the bea-
con ||x − x̌||2 due to the decreased signal-to-noise ratio.
For the purposes of constructing an observation model that
scales to arbitrarily high dimensions, we also scale the sig-
nal strength by a normalization factor to preserve scaling of
the Euclidean norm (|| · ||2) as the dimension of the state
space increases. We chose the normalization factor to be√
n, which is the length of the longest diagonal of a n-D

unit hypercube. This gives us the following non-linear ob-
servation model:

zt = h[xt] + n = (
√
n)2/(1 + ||xt − x̌||22) + n, (31)

where zt ∈ R consists of a signal strength reading from the
beacon, and the observation noise n ∼ N [0, N] is consid-
ered constant.

In our experiments, the goal is placed at the origin, the
robot is initialized with a belief state that consists of a ran-
domly sampled state within the unit hypercube and a vari-
ance of 0.1I . The location of the beacon is also chosen at
random. We use control and state cost matrices of Rt = I ,
Qt = 10I , and Q` = 10`I where ` = 15. We initialize
the method with a straight line trajectory from the mean of
initial belief to the goal. Due to high initial uncertainty in
position, the optimal strategy for the robot is typically to
move to the beacon for precise localization before moving
the goal (Fig. 1(a), 1(b), and 1(c)).

0 20 40 60 80 100 120
0

2

4

6

8

10

12
x 10

4

Dimension (n)

T
im

e/
It

er
 (

m
s)

 Our method (O[n4])

DDP (O[n7])

Figure 2: Variation in the average time per iteration (ms) versus
the number of dimensions (1− 128). Our method (solid blue line)
has lower computation times as compared to state of the art prior
work based on DDP (van den Berg, Patil, and Alterovitz 2011)
(dashed green line) and scales as the dimension increases, which
enables us to solve considerably higher dimensional problems.

We evaluate the scalability of our approach with respect
to the number of dimensions of the state. Fig. 2 shows the
variation in the time required per iteration of our method as
the dimension of the state space increases from 1 to 128,
averaged over 100 trials per dimension. For each trial in
each dimension, we randomly sampled the initial state of
the robot and the beacon location within the unit hypercube.
The growth in the average time per iteration (in millisec-
onds) is bound by the predicted O[n4] complexity. We also
compare our method against a O[n7] approach based on dif-
ferential dynamic programming (DDP) (van den Berg, Patil,
and Alterovitz 2011). The average time per iteration of our
method is considerably lower and scales as the state space
dimension increases as compared to prior work. Our ap-
proach is able to compute locally-optimal solutions in con-
tinuous spaces within minutes on commodity hardware for
up to 128 dimensional spaces.

Table 1 provides more detail for some of the lower-
dimensional experiments, and shows that the average num-
ber of iterations and total computation time increases as
the dimensionality increases. It should be noted that even
though the DDP based approach demonstrates quadratic
convergence (Liao and Shoemaker 1991) and requires lesser
number of iterations on average as compared to our ap-
proach, it does not scale well to higher dimensions.

Our method (O[n4]) DDP (O[n7])
Dim Num Total Num Total

iterations time (ms) iterations time (ms)
1 13 (± 4) 9 (± 3) 7 (± 2) 28 (± 9)
2 31 (± 8) 40 (± 11) 18 (± 6) 203 (± 72)
4 48 (± 15) 146 (± 44) 20 (± 11) 817 (± 419)
8 60 (± 14) 575 (± 132) 25 (± 8) 9.4e3 (± 2.3e3)

16 72 (± 13) 3.7e3 (± 640) 29 (± 12) 1.8e5 (± 7.5e4)
32 88 (± 19) 2.9e4 (± 6.2e3) No solution found

Table 1: Comparison of our method with prior work over 100
trials. Standard deviations provided in parentheses.

4-D Under-Actuated Car-Like Robot
We consider the case of a non-holonomic car-like robot nav-
igating in a partially-observable 2-D environment with ob-
stacles. The state x = (x, y, θ, v) ∈ R4 of the robot consists
of its position (x, y), its orientation θ, and speed v. The
control input vector u = (a, φ) consists of an acceleration
a and the steering wheel angle φ. This gives the following

(a) Input trajectory (b) Optimal trajectory

Figure 3: Under-actuated car-like robot navigating to the goal
(shown in green) in a partially-observable environment with
beacon-based localization (beacons shown in blue). (a) Naı̈ve
collision-free trajectory computed using an uncertainty-unaware
planner accumulates considerable uncertainty during execution in
the narrow passage. (b) The locally-optimal solution guides the
robot to both beacons before it arrives at the goal through the nar-
row passage with considerably reduced uncertainty.

stochastic non-linear dynamics model:

xt+1 = f [xt,ut] +m =

 xt + τvt cos θt
yt + τvt sin θt

θt + τvt tan[φt]/d
vt + τat

+m, (32)

where τ is the time step, d is the length of the car-like robot,
and m ∼ N [0,M [ut]] scales the noise proportional to the
control input ut. The measurement vector zt ∈ R3 consists
of two signal measurements from two beacons placed in the
environment (similar to the beacon considered above) and
speed measurement from a speedometer:

zt = h[xt] + n =

1/(1 + ||xt − x̌1||22)
1/(1 + ||xt − x̌2||22)

vt

+ n, (33)

with constant measurement noise variance n ∼ N [0, N].
Our method takes as input a collision-free trajectory to the

goal computed using a RRT planner (LaValle and Kuffner
2001), which only generates a path and does not con-
sider uncertainty. If the robot were to follow this input
trajectory in an open-loop fashion, noisy actuation would
likely result it collision with an obstacle before reaching the
goal (Fig. 3(a)). Our method improves the input trajectory
to compute a locally-optimal trajectory and a correspond-
ing control policy that safely guides the robot to the goal
(Fig. 3(b)). Notice how the optimal trajectory visits both
beacons for reliable localization. The nominal trajectory tra-
verses the narrow passage along the medial axis and the re-
mainder of the nominal trajectory is revised to stay away
from the boundaries of the environment, to minimize like-
lihood of colliding with obstacles. It took 4.84 seconds to
converge to the locally-optimal solution over 52 iterations.

6 Conclusion and Future Work
We presented a highly efficient algorithm for solving contin-
uous POMDPs in which beliefs can be modeled using Gaus-
sian distributions over the state space. Our approach per-
forms approximate value iteration over the belief space with
a running time that is only O[n4] in the dimension n of the
state space, which we showed enables solving problems with
state spaces of up to 128 dimensions. Further, our approach

generalizes earlier work on Gaussian-based POMDPs by re-
moving the assumption that maximum-likelihood observa-
tions are received.

Our approach has several limitations. First, we represent
beliefs using Gaussian distributions. This may not be an ac-
ceptable approximation in some applications, for instance
where multi-modal beliefs are expected to appear. However,
the class of problems where Gaussian distributions are ap-
plicable is large, as is proven by the widespread use of the
extended Kalman filter for state estimation and our approach
should be directly applicable in such applications. Second,
we require the dynamics, observation, and cost functions to
be smooth, since our method relies on gradients to iterate to-
wards a locally-optimal solution. Our approach would there-
fore not work directly in some experimental domains where
there are abrupt boundaries between sensing regimes (e.g.
inside or outside the field of view of a camera).

In future work we plan to apply our method to real-world
problems that involve complex dynamics and that would
benefit from a fast continuous Gaussian POMDP solver, in-
cluding autonomous quadrotor flight, medical needle steer-
ing, and manipulation of deformable tissue.

References
Bai, H.; Hsu, D.; Lee, W.; and Ngo, V. 2011. Monte Carlo
Value Iteration for Continuous-State POMDPs. Algorithmic
Foundations of Robotics IX 175–191.
Brooks, A.; Makarenko, A.; Williams, S.; and Durrant-
Whyte, H. 2006. Parametric POMDPs for Planning in Con-
tinuous State Spaces. Robotics and Autonomous Systems
54(11):887–897.
Bry, A., and Roy, N. 2011. Rapidly-exploring Random Be-
lief Trees for Motion Planning Under Uncertainty. In Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), 723–730.
C. Papadimitriou, J. T. 1987. The Complexity of Markov
Decision Processes. Mathematics of Operations Research
12(3):441–450.
Erez, T., and Smart, W. D. 2010. A Scalable Method for
Solving High-Dimensional Continuous POMDPs Using Lo-
cal Approximation. In Conf. on Uncertainty in Artificial In-
telligence, 160–167.
Hauser, K. 2011. Randomized Belief-Space Replanning in
Partially-Observable Continuous Spaces. Algorithmic Foun-
dations of Robotics IX 193–209.
Jacobson, D., and Mayne, D. 1970. Differential Dynamic
Programming. American Elsevier Publishing Company, Inc.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and Acting in Partially Observable Stochastic Do-
mains. Artificial Intelligence 101(1-2):99–134.
Kurniawati, H.; Du, Y.; Hsu, D.; and Lee, W. 2011. Mo-
tion Planning under Uncertainty for Robotic Tasks with
Long Time Horizons. Int. Journal of Robotics Research
30(3):308–323.
Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. SARSOP:
Efficient Point-based POMDP Planning by Approximating
Optimally Reachable Belief Spaces. In Robotics: Science
and Systems (RSS).

LaValle, S., and Kuffner, J. 2001. Randomized Kin-
odynamic Planning. Int. Journal of Robotics Research
20(5):378–400.
Liao, L. Z., and Shoemaker, C. A. 1991. Convergence in Un-
constrained Discrete-Time Differential Dynamic Program-
ming. IEEE Trans. on Automatic Control 36(6):692–706.
Miller, S. A.; Harris, Z. A.; and Chong, E. K. P. 2009.
Coordinated Guidance of Autonomous UAVs via Nominal
Belief-State Optimization. In American Control Conference
(ACC), 2811–2818.
Ong, S.; Png, S.; Hsu, D.; and Lee, W. S. 2010. Planning un-
der Uncertainty for Robotic Tasks with Mixed Observability.
Int. Journal of Robotics Research 29(8):1053–1068.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based
Value Iteration: An Anytime Algorithm for POMDPs. In
Int. Joint Conf. on Artificial Intelligence, 1025–1032.
Platt, R.; Tedrake, R.; Kaelbling, L.; and Lozano-Perez, T.
2010. Belief Space Planning assuming Maximum Likeli-
hood Observations. In Robotics: Science and Systems (RSS).
Platt, R.; Kaelbling, L.; Lozano-Perez, T.; and Tedrake, R.
2011. Efficient Planning in Non-Gaussian Belief Spaces and
its Application to Robot Grasping. In Int. Symp. on Robotics
Research (ISRR).
Porta, J.; Vlassis, N.; Spaan, M.; and Poupart, P. 2006.
Point-based Value Iteration for Continuous POMDPs. Jour-
nal of Machine Learning Research 7:2329–2367.
Prentice, S., and Roy, N. 2009. The Belief Roadmap: Effi-
cient Planning in Belief Space by Factoring the Covariance.
Int. Journal of Robotics Research 28(11–12):1448–1465.
Silver, D., and Veness, J. 2010. Monte-Carlo Planning in
Large POMDPs. In Advances in Neural Information Pro-
cessing Systems (NIPS). 2164–2172.
Smith, T., and Simmons, R. 2004. Heuristic Search Value
Iteration for POMDPs. In Proc. Conf. on Uncertainty in
Artificial Intelligence, 520–527.
Thrun, S.; Burgard, W.; and Fox, D. 2005. Probabilistic
Robotics. MIT Press.
Thrun, S. 2000. Monte Carlo POMDPs. Advances in Neural
Information Processing Systems 12:1064–1070.
Todorov, E., and Li, W. 2005. A Generalized Itera-
tive LQG Method for Locally-Optimal Feedback Control of
Constrained Nonlinear Stochastic Systems. In Proc. Ameri-
can Control Conference (ACC), 300–306.
van den Berg, J.; Abbeel, P.; and Goldberg, K. 2011. LQG-
MP: Optimized Path Planning for Robots with Motion Un-
certainty and Imperfect State Information. Int. Journal of
Robotics Research 30(7):895–913.
van den Berg, J.; Patil, S.; and Alterovitz, R. 2011. Mo-
tion Planning under Uncertainty using Differential Dynamic
Programming in Belief Space. In Int. Symp. on Robotics
Research (ISRR).
Welch, G., and Bishop, G. 2006. An Introduction to the
Kalman Filter. Technical Report TR 95-041, Univ. North
Carolina at Chapel Hill.

