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Abstract— We introduce an optimization-based control ap-
proach that enables a team of robots to cooperatively track
a target using onboard sensing. In this setting, the robots are
required to estimate their own positions as well as concurrently
track the target. Our probabilistic method generates controls
that minimize the expected future uncertainty of the target.
Additionally, our method efficiently reasons about occlusions
between robots and takes them into account for the control
generation. We evaluate our approach in a number of experi-
ments in which we simulate a team of quadrotor robots flying in
three-dimensional space to track a moving target on the ground.
We compare our method to other state-of-the-art approaches
represented by the random sampling technique, lattice planning
method, and our previous method. Our experimental results
indicate that our method achieves 4 times smaller average
maximum tracking error and 3 times smaller average tracking
error than the next best approach in the presented scenario.

I. INTRODUCTION

Tracking a moving target has many potential applications
in various fields. For example, consider a search and rescue
scenario where autonomous ground robots are deployed to
assist disaster victims but they are not able to localize them-
selves in an unknown environment. In this case, one could
use flying robots that due to their higher altitude can take
advantage of, e.g., GPS signals on the one hand and can help
to localize the ground robots by observing them on the other
hand. Although it comes at the cost of higher complexity
in motion planning, using multiple cooperatively controlled
robots in this setting provides undisputed advantages, such
as increased coverage, robustness to failure and reduced
uncertainty of the target.

Consider a scenario depicted in Fig. 1 where a team
of aerial robots equipped with onboard cameras is tasked
with tracking and estimating the position of a mobile robot
with respect to a global frame of reference. Some of the
quadrotors may be in the field of view of the external
global sensor while others are not. The ideal cooperative
control algorithm for this team would take into account all
visibility constraints and uncertainties in order to establish a
configuration of quadrotors that enables to propagate position
information from the global sensors through the quadrotors
to the target.
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Fig. 1. Three quadrotors cooperatively tracking a target following a figure-
eight trajectory (blue line). The green ellipsoids show the 3-dimensional
covariances of quadrotors’ positions. The green ellipse represents the 2-
dimensional covariance of the position of the target. Magenta lines depict
the measurements between quadrotors and the global camera (blue cube
at the top). How should the quadrotors move in order to minimize the
uncertainty of the target?

We introduce a centralized planning approach that gener-
ates controls for multiple robots and minimizes the uncer-
tainty of the tracked target. At any particular instance an
individual quadrotor may not be able to see the target due to
occlusions or the sensor’s limited field-of-view. To formulate
a cost function that considers these discontinuities in the
sensor domain, we extend the approach from [23] to multiple
robots and penalize the trace of the target’s covariance. Using
this cost function, we employ an optimization framework to
find locally optimal controls. We execute these controls and
estimate the state of the quadrotor team and target using an
Extended Kalman Filter (EKF) [27].

The novel contributions of this paper are as follows: a) we
take into account sensing discontinuities caused, for example,
by occlusions in different multi-robot configurations in a
manner that is amenable to continuous optimization, and b)
we generate controls in 3 dimensions for all the quadro-
tors, hence there is no need for additional reasoning about



potential multi-robot sensing topologies. We evaluated our
approach in a number of simulations and compared it to our
previous method in which we introduced cooperative multi-
robot control with switching of sensing topologies [12].

II. RELATED WORK

The task of cooperative target tracking has been addressed
in various ways. Many researchers considered centralized [6,
8], decentralized [1, 19, 21, 22], and distributed [16, 17, 28]
approaches to control multiple aerial or ground robots. Nev-
ertheless, all of the above approaches do not take into account
the position uncertainty of the robots that are deployed to
perform the tracking task. The position of the robots is
assumed to either be known or independently obtained with
high accuracy. In this work, we consider both, the position
uncertainty of the tracked target as well as the uncertainty in
the robots’ poses, which effectively eliminates the need of a
highly accurate external tracking system.

The problem of target localization is very similar to the
task of target tracking. There have been many authors that
worked on target localization [9, 10, 11, 13, 26] in a multi-
robot scenario with onboard sensing. It is worth noting that
these approaches are implemented in a distributed fashion
which makes them well-suited for multi-robot scenarios
with limited communication. One of the simplifications
introduced in these approaches, however, is to limit the
robots to planar movements and disable the possibility that
the robots can be perceived by each other. In our work,
we relax these assumptions and show how to cope with
occlusions between different robots. Furthermore, the above-
mentioned approaches use the mutual information measures
as an uncertainty measure. In contrast, we use the trace of
the covariance, which as shown by Beinhofer et al. [4] copes
better with degenerate covariances.

Another tracking approach was proposed by Ahmad and
Lima [2] where the authors weight the observations of
individual robots based on their localization uncertainty.
Zhou and Roumeliotis [29] proposed a similar approach but
their focus is on the non-convex optimization of the cost
function and evaluation of different sensor models. In both
of these approaches, the authors decouple the target tracking
from the robots’ localization which results in not taking into
account the high correlation of the target’s and the robots’
position estimates.

There have been several optimization-based approaches [3,
14, 15] that tackle the problem of cooperative multi-robot
localization using only onboard sensors. These approaches,
however, provide the maximum-likelihood state estimates
which does not allow to directly minimize the uncertainty
of the target pose.

In our previous work [12] we introduced the concept of
level-based sensing topologies, which simplifies the reason-
ing about occlusions and reduces the considered control
space of each robot to a two-dimensional plane. In this
paper, we tackle the problem of generating locally optimal
controls for each quadrotor in the full 3-dimensional space
and we explicitly reason about occlusions in the trajectory

optimization algorithm. In addition, we do not, as previously,
apply the same controls over the look-ahead horizon in the
optimization but consider arbitrary trajectories with different
controls for different time steps. Moreover, by removing the
level-based sensing topologies in this work, we enable more
realistic simulations as the quadrotors are not assumed to
instantly jump from one topology level to another.

III. APPROACH

We propose a centralized approach where we jointly
estimate the positions of the quadrotors and the target using
an EKF. First, we describe our state estimation technique
to then focus on the control generation and reasoning about
occlusions.

A. State Estimation with EKF

1) System Parametrization: The state at time ¢ consists of
the individual quadrotor poses Xgl),i € [1,n] and the target
pose xﬁt‘"g ) Let ugi) be the control input applied to the ith
robot at time . The joint state and control input are defined
as:

Xy = [xgl), . ,xﬁ”), x?‘”g)] (D
u; = [ugl), ol uﬁ")] 2)

Let >; be the uncertainty covariance of the joint state.
The dynamics and measurement models for the joint state
are given by the stochastic, differentiable functions f and h:

xip1 = f(xe,up,q0), @~ N(0,Qy) 3)

z¢ = h(x,1r¢), 1.~ N(0,Ry) €]

where q; is the dynamics noise, r; is the measurement noise,
and they are assumed to be zero-mean Gaussian distributed
with state-dependent covariances (); and Ry, respectively.

We consider two types of sensors and corresponding mea-
surements: absolute (global) measurements, e.g., GPS, and
relative measurements between two quadrotors or a quadrotor
and the target, e.g., distance or relative pose measurements.
The stochastic measurement function of the absolute sensors
is given by:

2 = h (x(", r}")
while the relative sensor model is:
2" = h09) (x(” x( xf )

All measurement functions can be naturally extended for the
joint state [20].

2) Uncertainty Model: Given the current belief (x;, X¢),
control input u; and measurement z; 1, the beliefs evolve
using an EKF.

In order to model the discontinuity in the sensing domain,
which can be caused either by a limited field of view or
occlusions, we follow the method from [23] and introduce
a binary vector §, € R4™[# The kth entry in the vector d;
takes the value 1 if the ith dimension of z; is available and
a value of 0 if no measurement is obtained. We detail the
method for computing J; in Sec. III-C.



The EKF update equations are as follows:

Xt+1 = f(Xt, Uy, O) + Kt(Zt — h(Xt)) (Sa)
Et+1 == (] - Kth)Eti‘rl (Sb)
Ky =S, HIAJAH S, HE A + W R WA,
(50)
Y = ANAT +ViQ VT (5d)
of of
Ay = a:(xt;utvo)a Vi= iq(xt’o) (5¢)
oh oh
Hy = 5 (%t41,0), Wi = 2-(xt41,0), (5)
where A; = diag[d;] and z; is a measurement obtained at
time step t.

It is worth noting that the Kalman gain update in Eq. 5c
includes the binary matrix A; to account for discontinuities
in the sensor domains. Furthermore, we apply the Markov
assumption [27] that the measurements are conditionally
independent given the joint state. Thus, the individual mea-
surements can be separately fused into the belief using the
EKF update equations.

3) Dynamics Model: We assume that the orientation of
the quadrotors is fixed and one can only control their
3D position. The dynamics of an individual quadrotor is
given by: fO)(x( u® q®) =x® + u®At + q) where
x(® ul) e R? are the 3D position and velocity and At is
the length of a time step. For modeling the target motion,
one can apply a standard uncontrolled motion model. In this
work, we assume a constant velocity motion model.

4) Observation Model: The cameras are assumed to be at
the center of each quadrotor facing down. The absolute sen-
sor provides the 3D position of the observed quadrotor/target
as a measurement:

h® (Xii)7 I'Ei)) — Xgi) + rgi)

The relative sensor model provides the position of the
(observed) jth quadrotor/target relative to the (observing) ith
quadrotor:

B9 (x) 0 p00)) () (@) 4 (i)

3
B. Control Generation using Optimization

At each time step ¢ we seek a set of control inputs
Uy.7—¢45 that for a time horizon A minimizes the uncertainty
of the target while penalizing collisions and the control
effort. In order to minimize the uncertainty of the target, we,
similarly to [4], penalize the trace of the target covariance.
The other components included in the cost function are: the
distance of every quadrotor pair to avoid collisions and the
cost of the control effort. The final cost function is composed
as follows:

atr(Eitm‘g)) + Becottision (X¢) + /|3
cr(xr, X7) = atr(ngarg)) + Becoliision (X1)

ccollision(x) = Z Z maX(HX(j) - XU)H% - dmazao)
=1 j=i+1

Ct(xta Eta ut) ==

sd14a79)(x) < 0 sd4ar9)(x) > 0

Fig. 2. Signed distance if the quadrotor/target is inside the view frustum
(left) and outside the view frustum (right).

where «, 3, and 7 are user-defined scalar weighting pa-
rameters and d,,4, 1S the maximum distance for which the
collision cost takes effect.

To eliminate the stochasticity of the cost functions, we
follow Platt et al. [25] and assume the maximum likelihood
observation is obtained at each time step. The final objective
function is:

T-1
min  Eler(xr, X7) + Z ct(x¢, B, up)] (6)
Xt T, Wt: T —1 P
s. t. Xt+1 = f(Xt, Uy, 0)
Xt € %feasiblev u; € %feasible

X0 = Xinit, 20 = Dinit

For trajectory optimization, one can solve a nonlinear
optimization problem to find a locally optimal set of con-
trols [24]. In this work, we used sequential quadratic pro-
gramming (SQP) to locally optimize the non-convex, con-
strained optimization problem. The innermost QP solver
was generated by a numerical optimization code framework
called FORCES [7]. FORCES generates code for solving
QPs that is specialized for convex multistage problems such
as trajectory optimization.

Given the output controls u;.7—; computed using trajec-
tory optimization, we follow the model predictive control
paradigm [5] by executing a subset of the optimized con-
trols and then replanning. We use the previously computed
controls as an initialization to warm start the optimization.

C. Reasoning about Occlusions

The absolute/relative position of a quadrotor/target may
not be observable due to occlusions from other quadrotors
and the limited field-of-view of the sensor. As previously
mentioned, we model this discontinuity with the binary
variable ¢ (according to [23]). In order to make the objective
function differentiable, we approximate § with a sigmoid
function. It is worth noting that this is only required in the
optimization step, the state estimation step remains as defined
previously.

Let sd(®/)(x) be the signed distance of x() to the
field-of-view of the jth quadrotor (see Fig. 2). The signed
distance is negative if the jth quadrotor is visible and positive
otherwise. We introduce the parameter  which determines
the slope of the sigmoidal approximation. The sigmoidal



sd(L1a79)(x) >

Fig. 3. Signed distance function in the presence of occlusions. First, we
determine the shadows of all the occlusions such that the resulting field-of-
view (the shaded area) is calculated. The signed distance is computed as
the distance to the field-of-view.

approximation of the measurement availability § is given by:

1

§5E) — _
14 exp[—a - sd®)(x)]

)

For more details on the sigmoidal approximation of the
availability of the measurement we refer the reader to [23].

To calculate the signed distance of xU) to the field-of-view
of x("), we first represent the field-of-view as a truncated
view frustum with a minimum and maximum distance given
by the sensor model as depicted in Fig. 3. If x%) is outside
of the view frustum, sd(*7)(x) is the distance of x) to
the view frustum as shown in the right plot in Fig. 2. If
x(9) is inside the view frustum and there are no occlusions,
the signed distance is computed as shown in the left plot
in Fig. 2. In the presence of occlusions, we first determine
the shadows of all the occlusions in the plane of x(7). In the
next step, we use an open source 2D polygon clipping library
- GPC! to generate the 2D polygon field-of-view, and then
calculate the signed distance. Fig. 3 shows an example of a
signed distance function in the presence of an occlusion.

IV. EVALUATION AND DISCUSSION

We evaluated our approach in a number of simulation
experiments. The simulation environment consists of a global
down-looking camera attached 4 meters above the origin of
the coordinate system, a ground robot target and a varying
number of quadrotors equipped with down-looking cameras.
Each quadrotor is controlled through the velocity commands
u = [vs,vy,v,]. The state of the target consists of
its position and velocity x(**79) —= [z,y,vz,v,] and the
target moves on the XY-plane in a figure-eight trajectory
(see Fig. 1). All camera sensors in this setup have the same
properties and can detect objects in a 3-meter high truncated
pyramid. Consequently, the global camera is not able to see
the target directly. An example of a system setup with the
field of view of each camera is depicted in Fig. 1. Our system
aims to estimate the position of the target as accurately as
possible by actively controlling the quadrotors.

http://wuw.cs.man.ac.uk/~toby/gpc/

A. Experiments

We present different sets of experiments illustrating vari-
ous evaluation criteria of our system.

1) Time Horizon Experiment: We evaluate the influence
of different time horizons on the tracking accuracy. Fig. 4
shows the statistics for three different time horizons. There is
no significant difference between the three presented plots.
This leads to a conclusion that larger time horizon factor
in the optimization step has no significant influence on the
effectiveness of our approach. This is most likely due to the
challenging shape of the target trajectory. The optimization
applies the constant velocity prediction of the target which
is constantly violated by the fact that the target is turning
to follow the trajectory. Based on these findings, we set the
time horizon to be 2 for the remaining experiments.

2) Sampling vs. Optimization Experiment: We compare
our optimization based control generation with random sam-
pling [6] and lattice planners [18]. Random sampling meth-
ods randomly sample controls to generate trajectories while
lattice planners draw samples from a predefined manifold,
which in our case was a sphere with radius equal to the
maximum allowed control effort. For both methods, the cost
of each resulting trajectory is evaluated and the controls
corresponding to the minimum cost trajectory are executed.
Fig. 5 shows the statistical results of the comparison between
the sampling method, lattice sampling method and our ap-
proach for 3 quadrotors. In order to make a fair comparison
for the sampling methods, we chose the number of samples
such that the execution times per one optimization step of
all the methods were similar and we averaged the results
over 10 runs. One can notice a significantly larger tracking
error and the trace of the target covariance in performance
of both of the sampling methods compared to the trajectory
optimization approach. It is worth noting that the lattice
approach yields worse results than the random sampling
approach. It is most likely due to the fact that generating
controls of the same magnitude throughout the trajectory
causes the quadrotors to constantly overshoot the target.
Given the constant velocity assumption, the challenging
shape of figure eight appears to be too difficult to follow
by using sampling approaches.

3) Number of Quadrotors Experiment: We compared the
tracking performance and the execution time for different
numbers of quadrotors. The statistics presented in Fig. 6
demonstrates a visible improvement by using a larger number
of quadrotors which confirms the intuition that larger teams
facilitate more reliable and accurate target tracking. It is
important to note that the quadrotors are able to leverage
their large quantity despite the very narrow field of view
of the cameras. This behavior is achieved because of the
reasoning about occlusions which prevents the quadrotors to
block each other’s views. In this experiment, similar to the
other experiments, one can notice two bumps in the error
statistics in the presented figures. These correspond to the
ends of figure eight, where the quadrotors have to spread
out in order to continue tracking the target, causing some of
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Fig. 4. Comparison of different time horizons in the optimization step. The time horizons are 2, 5, and 10, respectively. Evaluation measures are shown
with 95% confidence intervals over 10 runs with 3 quadrotors. There is no significant difference in the tracking error for these time horizons.
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yields better results than the other presented methods.
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Fig. 6. Comparison of our optimization-based approach applied to different number of quadrotors used for the tracking task. From left to right the number
of quadrotors are: 1, 3 and 5. Evaluation measures are shown with 95% confidence intervals over 10 runs. The experiments confirms the intuition that

deploying more quadrotors improves the tracking performance.
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Fig. 7. Statistics over 10 runs of time per one optimization step for different
number of quadrotors. Time per optimization step scales quadratically with
the number of quadrotors.

the quadrotors to be temporarily outside the field-of-view of
the global camera.

Fig. 7 depicts the average time for one optimization
step for different numbers of quadrotors. The curve grows
quadratically, which is expected, because of the n? number
of potential observations that have to be evaluated for all the
quadrotor pairs.

4) Optimization with Occlusions Experiment: To evaluate
the importance of considering occlusions, we evaluated our
method with and without reasoning about occlusions for
a team of 3 quadrotors (Fig. 8) and measured the target
covariance and target tracking error. Of note is the higher

uncertainty in Fig. 8(top) than Fig. 8(bottom) at the be-
ginning, middle, and end of the target trajectory. When not
considering occlusions, the error is higher at these segments
because these segments are directly underneath the global
camera, which leads to a crowded space. In this scenario,
when not considering occlusions in the optimization, the
quadrotors block each other’s views, resulting in worse
tracking error as compared to considering occlusions in the
optimization.

5) Topology Switching Experiment: We compare the
method proposed in this paper to our previous target tracking
method that introduced level-based sensing topologies and an
efficient topology switching algorithm [12]. In this approach,
the quadrotors are organized on different levels with an
assumption that each level can only sense the adjacent
level below it. At each time step the algorithm determines
the planar controls for each of the quadrotors as well as
determines whether to switch to one of the neighboring
topologies by moving one of the quadrotors by one level up
or down. This approach was introduced in order to avoid the
reasoning about occlusions between quadrotors at different
altitudes. However, a topology switch is assumed to be
instantaneously completed, which is not realistic.
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Fig. 8. Comparison between not taking occlusions into account in the
optimization step (top) and accounting for occlusions using the signed
distance function presented in this work (bottom). Statistics and 95%
confidence intervals over 10 runs with 3 quadrotors. Taking occlusions into
account is beneficial especially at the spots right below the global camera
(i.e. start, middle and the end of the trajectory).

In order to make our approach and the level-based ap-
proach comparable for standard quadrotors, we introduce a
length 3 time step delay for the topology switch in order to
realistically simulate a real quadrotor adjusting altitude. The
performance of both algorithms is depicted in Fig. 9. The
quadrotors perform better when explicitly reasoning about
occlusions with our approach, especially at the borders of
the figure eight where the target is far away from the global
camera. This phenomena can be explained by analyzing
Fig. 10. In the level-based approach, if the target is far
away from the global camera the optimal topology is a
chain topology. Our approach, however, is able to form a
different sensing topology that is superior to the previous
one due to its higher number of available measurements (see
Fig. 10). This superior topology is not valid for the level-
based approach as it violates the assumption of sensing only
the adjacent level below the current level. This topology
enables the algorithm to localize the quadrotor on the left
side due to the measurement of the other quadrotor and
have two localized quadrotors observe the target. It is worth
noting that our novel approach can create a greater variety
of sensing topologies compared to our previous approach
without explicitly reasoning about sensing topologies.

6) Average Error Comparisons: Table I shows the statis-
tics of the average tracking error and maximum average
tracking error for different approaches tested in our experi-
ments. It is worth noting that our approach achieved 4 times
smaller average maximum tracking error than the next best
method, the level-based approach. Our method also achieves
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Fig. 9. Target tracking results for our previous level-based approach [12]
(top) and the hereby presented method without explicitly reasoning about
sensing topologies (bottom). Statistics and 95% confidence intervals over
10 runs with 3 quadrotors. The approach presented in this paper is more
beneficial for the reasons explained in Fig. 10.

Fig. 10. An example of an advantage of our approach over the level-
based approach. Left: most beneficial sensing topology for the level-based
approach. The quadrotors form a chain topology as each level of quadrotors
is allowed to sense only one level below it. Right: A superior sensing
topology achieved by our novel method. The lower quadrotor is seen by
the global sensor and the other quadrotor. The upper quadrotor can localize
itself based on the observation of the lower quadrotor. Both quadrotors can
observe the tracking target which provides more information than the level-
based approach. There are no constraints for the topology levels.

a 3 times smaller average tracking error compared to the
level-based approach.

V. CONCLUSIONS AND FUTURE WORK

We presented an optimization-based probabilistic multi-
robot target tracking approach that efficiently reasons about
occlusions. We evaluated our approach in a number of
simulation experiments. We have compared our method to
other baseline approaches such as random sampling, lattice
sampling, and our previous work on sensing topologies [12].
Our experimental results indicated that our method achieves



‘ level-based 2D optimization

lattice planning

random sampling  our approach (3D optimization)

0.0156 £ 0.024
0.0030 £ 0.0036

average max tracking error [m]
average tracking error [m]

0.41 £1.00
0.037 £ 0.073

0.027 £ 0.028
0.0035 £ 0.0044

0.0037 £ 0.005
0.0012 £ 0.0007

TABLE I. Quantitative results for the experiments with 3 quadrotors. Max target tracking error was averaged over 10 runs, target tracking error was

averaged over all time steps and 10 runs. Our approach yields significantly smaller error than the other baseline methods.

4 times smaller average maximum tracking error and 3 times
smaller average tracking error than the next best approach in
the presented scenario.

In future work, we plan to extend our centralized planning
approach to fully decentralized, distributed planning. This is
advantageous in multi-robot settings with limited commu-
nication. Finally, we would like to further demonstrate the
applicability of our approach in a real robot scenario.
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