
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Cloud-Based Grasp Analysis and Planning
for Toleranced Parts Using Parallelized

Monte Carlo Sampling
Ben Kehoe, Student Member, IEEE, Deepak Warrier,

Sachin Patil, Member, IEEE, and Ken Goldberg, Fellow, IEEE

Abstract—This paper considers grasp planning in the presence
of shape uncertainty and explores how Cloud Computing can
facilitate parallel Monte Carlo sampling of combinations actions
and shape perturbations to estimate a lower bound on the
probability of achieving force closure. We focus on parallel-jaw
push grasping for the class of parts that can be modeled as
extruded 2D polygons with statistical tolerancing. We describe
an extension to model part slip and experimental results with
an adaptive sampling algorithm that can reduce sample size by
90%. We show how the algorithm can also bound part tolerance
for a given grasp quality level and report a sensitivity analysis
on algorithm parameters. We test a Cloud-based implementation
with varying numbers of nodes, obtaining a 515× speedup with
500 nodes in one case, suggesting the algorithm can scale linearly
when all nodes are reliable. Code and data are available at:
http://automation.berkeley.edu/cloud-based-grasping

Note to Practitioners—In manufacturing, small variations in
part shape are inevitable. This paper addresses the challenge of
grasping parts with a parallel-jaw gripper where the true part
shape is modeled with statistical tolerancing. We use sampling
to compute the grasp position and orientation that optimizes the
probability of achieving a stable grasp. The computation requires
many samples but can be parallelized and performed efficiently
using Cloud computing. We present algorithms and experiments
using PiCloud, a commercial cloud computing platform. In future
work, we hope to extend the 2D linear analysis to to 3D parts
with curved surfaces.

Index Terms—Cloud Automation, Cloud Robotics, grasping,
Cloud Computing, Monte Carlo sampling

I. INTRODUCTION

AUTOMATION focuses on quality and reliability of pro-
cesses in repetitive tasks. We present an approach to reli-

able grasp analysis and planning based on highly-parallelizable
Monte Carlo sampling that enables cloud-based execution.

A fundamental challenge, even with perfect recognition, is
variation in part shape, because of manufacturing constraints,
and variation in mechanics, because of limits on sensing during
grasping.

The need to determine robust grasps is especially important
in Automation, where the cost of failure can be high, but is
offset by the ability to perform extended analysis offline. This
situation is ideal for Cloud Computing, where vast computing
power is available but high latency impairs real-time operation.

Manuscript received Friday 5th September, 2014.
Authors are with the University of California, Berkeley, CA, USA, (e-mail:
{benk, dwarrier, sachinpatil, goldberg}@berkeley.edu).

Fig. 1. Part tolerance model and example results. On the upper left, circles
with a radius of one standard deviation of an isotropic Gaussian distribution
are drawn around each vertex and the center of mass. On the upper right, the
nominal part is plotted over 100 sampled perturbations (shown in gray). The
lower center is a sample “whisker diagram”, which is used to show algorithm
results. Each line segment represents a candidate grasp, and indicates its
contact point on the part. The line segment indicates the direction of approach
for the grasp, and is orthogonal to the gripper jaw. The length corresponds to
the lower bound on the probability of a stable grasp.

This paper describes a method that leverages Cloud Com-
puting to analyze grasps on 2D polygonal parts with shape tol-
erances. We take a conservative approach: we use a statistical
sample of part shape perturbations to find the value of a quality
metric that estimates a lower bound on the probability of force
closure for a class of grasps called conservative-slip push
grasps, which can be rapidly evaluated without simulation.
We then combine the results of the retained candidate grasps,
weighting their success on a given part perturbation by the
probability of that perturbation, to estimate a lower bound on
the probability of achieving force closure.

We provide a grasp planning algorithm that uniformly
samples from our simplified grasp configuration space on a
simplified version of the part shape. We improve the grasp
planning by adaptively reducing the candidate grasp set after
testing a small number of part perturbations, reducing the
overall number of grasp evaluations.

We explore properties of the algorithm by performing a
sensitivity analysis on the parameters of the algorithm, de-
termining the effect of these parameters on grasp quality; by
evaluating the adaptive grasp reduction; and by developing

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 2

a procedure for finding tolerance bounds based on a quality
threshold. We evaluate the scalability of the algorithm in
Cloud-based parallel execution in Section VI.

This journal paper is an expanded and updated presentation
of research first described in a series of papers at ICRA [29]
and CASE [30], and includes a Cloud implementation and
results.

II. RELATED WORK

In “Algorithmic Automation” [22], abstractions can allow
the functionality of automation to be designed independent of
the underlying implementation and can provide the founda-
tion for formal specification and analysis, algorithmic design,
consistency checking and optimization. Algorithmic Automa-
tion thus facilitates integrity, reliability, interoperability, and
maintainability and upgrading of automation.

Several studies use contact sensors to improve grasp quality
in the presence of uncertain part geometry [16], [20], [25],
[39]. However, many robotic grippers do not have contact
sensing capability. Sensing is often implicitly assumed to be
present, such as when pinch grasps are required, since the part
must not be moved by contact with the gripper [12], [33], [47],
[48].

Studies have explored properties of polygonal parts for
grasping [10], [11], [15], but focus on point grasps, which ig-
nores the complex interaction created by a gripper of nonzero
width, as is the case with parallel-jaw grippers.

Push manipulation of parts has been extensively investigated
by Mason [36] and others [5], [35]. Performing pushing
operations with a gripper to reduce pose uncertainty has been
demonstrated by Dogar and Srinivasa [18]. However, these
methods, again, do not take into account part shape tolerance.

Similarly, many recent studies in robotic grasping focus on
improving grasps on known parts [44], [45], [46] that do not
take into account tolerances. The work in robotic grasping
that addresses tolerance largely focuses on part pose [7], [18],
[32], [41]. Methods for sensorless part orientation [8], [23],
[50] can also be used in the presence of uncertain part pose.
However, these methods do not take into account tolerances
for the geometry of the part

An explicit part tolerance model for grasping was proposed
by Christopoulos and Schrater [12] that approximates the
part boundary with splines but does not account for mo-
tion induced by contact from the gripper. Models exist for
tolerance [9], [27] that use worst-case bounds rather than
probability distributions. Other work considers uncertainty for
unknown parts [26], or defines topological tolerance models
but does not apply it to grasping [43].

The introduction of Cloud Computing can allow computa-
tion to be offloaded from robots [6], as well as development
of databases that allow robots to reuse previous computations
in later tasks [14]. While networked automation has a long
history [31], only recently has research focused on networked
robots sharing information to accomplish tasks widely sepa-
rated in time and space [37], [49]. Grasping could benefit from
this effort, since grasps computed for a part can be applied to
similar parts encountered later [13], [21], [24]. This allows

the construction of grasp databases that can be shared and
referenced by multiple robots [24], [34].

III. PROBLEM STATEMENT

We consider a parallel-jaw gripper, gripping a part from
above. We assume that we have a conservative estimate of
the coefficient of friction between the gripper and the part,
denoted µ.

We assume that the part can be modeled as an extruded
polygon to be gripped on its edges, resting on a planar work
surface, and that the part has an estimated nominal center
of mass, which may not be at the centroid. The gripper–part
interaction is assumed to be quasistatic, such that the inertia
of the part is negligible [40].

A. Part Tolerance Model

Part shape tolerances are modeled as independent Gaussian
distributions on each vertex and center of mass, centered on
their nominal values, as shown in Fig. 1. The variance of the
distributions is an input, denoted Σ, which may be dictated by
manufacturing constraints. One advantage of using probability
distributions is that we can use a Monte Carlo approach to
evaluate the effect of higher tolerances on candidate grasps.

We denote the space of possible parts as S0, the space of
possible perturbations of a shape S ∈ S0 as S(S). Note that
for any S ∈ S0, S(S) ⊆ S0. We further denote the space of all
(part, part perturbation) tuples as Ŝ = {(S0, S) |S0 ∈ S0, S ∈
S(S0)}.

The input to the algorithm is a list of edges defining a non-
intersecting polygon, denoted S0, and the variance Σ of the
Gaussian tolerance distributions for the vertices and center of
mass.

B. Contact Configuration Space

A B

D

ϕ

C

Fig. 2. Contact configurations. The contact points are indicated by circles.
By convention, references to left and right are relative to the approach line in
the direction from p̂i into the part, and positive φ is clockwise. By definition,
if φj > 0, the gripper jaw’s right edge must be on the approach line, and if
φj < 0, the gripper jaw’s left edge must be on the approach line. If φj = 0,
we define the approach line to be the gripper jaw’s right edge. Configuration
A shows an approach angle of −40◦, which implies a gripper to the right
of the approach line. Configuration B shows an approach angle of 0◦, which
by convention has a gripper to the left of the approach line. Configurations
C and D show an approach angle of 40◦, which implies a gripper to the left
of the approach line. Additionally, if configuration C was a nominal contact
configuration g, the actual contact configuration g′ would be configuration D.

The contact a gripper jaw makes with a part is defined by
the ordered pair c = (p, φ), where p is the contact point,

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 3

a point along the one-dimensional boundary of the part, and
φ ∈ [−π2 ,

π
2] is the approach angle. The gripper jaw extends

perpendicularly from the contact point. For φ ∈ [−π2 , 0], the
contact point is the right edge of the gripper jaw, otherwise it
is the left edge. The approach line is the line through p̂ along
φ. We denote the space of all contact points as C. Examples
of contact configurations can be seen in Fig. 2.

We denote sets of similar contact configurations as Tq,ψ ⊆
C, where a configuration c = (p, φ) is in Tq,ψ if φ = ψ and p
lies on the line through q perpendicular to the approach line.
We denote the similar contact configuration set that contains
a given contact configuration c as T (c). We denote the set of
all similar contact configuration sets as T. These sets become
useful as conservative-slip pushes result in many initially-
dissimilar grasps joining similar configuration sets.

C. Candidate Grasp Configuration Space

The grasp configuration space is defined by a starting
position and orientation of the first gripper jaw, and a direction
of motion from this position. We assume that orientation of the
gripper jaw face is perpendicular to the direction of motion.

We reduce the configuration space from three dimensions to
two using nominal contact configurations to eliminate some
of the redundancies in grasp configurations. A grasp is defined
by a contact configuration g ∈ C on a nominal part S, as if
the gripper jaw moved in along the approach direction from
infinity.

As shown by configuration C in Fig. 2, the actual contact
configuration g′ ∈ C for a grasp g may not be the nominal
contact configuration. We define a function

fC : C× Ŝ→ C

that takes a grasp (in the form of a nominal part and nominal
contact configuration) and a perturbation of the nominal part
and produces the contact configuration for that grasp on the
perturbation.

D. Conservative-Slip Push Grasps with Force Closure

We consider a class of push grasps that enhance part
alignment, conservative-slip push grasps with force closure.
We define this as grasps in which the gripper pushes the
part without slipping until it rotates into alignment with the
first gripper jaw (a zero-slip push), or slips but is guaranteed
to enter a zero-slip push (a conservative-slip push) and then
completes force closure with the second gripper jaw, as seen
in Fig. 3. Under this conservative definition, we include slip
of the second gripper jaw under limited conditions described
in Section IV-A3.

We define the following notation:

fα : S(S)× C→ P(C)

fβ : S(S)× T→ C× C
fγ : S(S)× C→ {0, 1}

where P is the power set,
fα is a function that, for a given part perturbation and contact
configuration, determines the set of possible conservative-slip

Fig. 3. Snapshots of the execution of a conservative-slip push grasp. The
green jaw makes the first contact, and once a stable push is established in
frame 3, the red jaw closes. After making contact in frame 5, the part rotates
into slip closure in frame 6.

push contact configurations that could result, or the empty set
if a conservative-slip push is not possible,
fβ is a function that, given a similar contact configuration set
T , returns two disjoint sets T0 and T1 such that T0 ∪ T1 = T
and T0 contains all contact configurations in T that do not
achieve force closure; thus T1 contains all the contact config-
urations in T that do achieve force closure, and
fγ is a function determining grasp success; it is the composi-
tion of fα and fβ :

fγ(S, c) =

1 if c′ ∈ T1 for (T0, T1) = fβ(S, T (c′))

∀c′ ∈ fα(S, c)

0 otherwise

E. Quality Measure

We define a quality measure Q(g, S; Σ, θ) as a lower bound
on the probability that grasp g on part S will result in force
closure based on the tolerance parameter Σ and parameter
vector θ.

Q(g, S; Σ, θ) =

∫
S(S)

p(s; Σ)fγ(g, s) ds (1)

The output of the grasp analysis algorithm is

Q = {Q(g, S; Σ, θ) | g ∈ G} (2)

where G ⊆ C is the set of candidate grasps for part S.
The best grasp and Q-value are:

g∗ = arg max
g∈G

Q(g, S; Σ, θ) (3)

Q∗(S, θ) = Q(g∗, S; Σ, θ) (4)

The adaptive version of our algorithm may reduce the value
of Q∗ relative to the non-adaptive version. The value of Q∗

as found by the non-adaptive algorithm is denoted Q∗max, and
the normalized value of Q∗ for the adaptive version is Q̂∗ =
Q∗/Q∗max.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 4

IV. ALGORITHM

The optimization in Eq. 3 is difficult to solve. The problem
is nonconvex over G, and fγ is discontinuous with no simple
closed form available. This means the integrand of Eq. 1
cannot be solved for directly. Our approach is to use Monte
Carlo integration for Eq. 1 and to use a discrete set of grasps
for G.

Our grasp analysis algorithm, shown in Algorithm 1,
calculates the quality metric for a set of grasps and part
perturbations, evaluating Eq. 1 over multiple grasps simul-
taneously. For each part perturbation, the candidate grasps
are evaluated to estimate if they result in conservative-slip
pushes (see Section IV-A1). The successful conservative-slip
pushes are grouped into sets of similar configurations (see
Section IV-A2), and conservative conditions for force closure
are evaluated. Finally, the overall probability of achieving
force closure for each candidate grasp is estimated.

Algorithm 1: Grasp Analysis Algorithm. Highlighted line
numbers indicate parallelizable steps.
Input: candidate grasp set G1, part perturbations
S1, S2, . . . , SM ∈ S(S0);

1 for Part perturbation set Sm = S1,S2, . . . ,SM do
2 for Part Sk = S1, S2, . . . , Sl ∈ Sm do
3 for Candidate grasp gij ∈ Gm do
4 Determine actual contact configuration

g′ = fC(gij , Sk);
5 Estimate if gij results in conservative-slip

push of Sk, finding push configurations
Cij = fα(Sk, g

′);
end

6 For all push configurations C, collect similar push
configurations T ;

7 for Similar configuration set Tq,ψ ∈ T do
8 Estimate regions of force closure success on

Sk, finding (Tq,ψ,0, Tq,ψ,1) = fβ(Sk, Tq,ψ);
9 for Contact configuration cij,Sk

∈ Tq,ψ do
10 Predict force closure success sijk ∈ {0, 1}

of gij for Sk as cij,Sk
∈ Tq,ψ,1;

end
end

end
11 for Candidate grasp gij ∈ Gm do
12 Compute intermediate grasp quality

Qm(gij , S0; Σ, θ);
end

12 Produce grasp set Gm+1 by removing low-quality
grasps from Gm according to parameter R;

end
13 for Candidate grasp gij ∈ G1 do
14 Compute grasp quality Q(gij , S0; Σ, θ);

end

Our grasp planning algorithm, shown in Algorithm 2,
uses the analysis algorithm on a part using a Monte Carlo
method: it generates a set of candidate grasps, and creates

part perturbations drawn from the distribution. These grasps
and perturbations are passed to the analysis algorithm.

The analysis algorithm uses a single parameter, the grasp
elimination criterion R, which is used in adaptively reducing
the candidate grasp set. The planning algorithm also uses
several additional parameters, denoted as the vector θ =
[dC , ρ,Φ,M, R]. The part tolerances for the vertices and
center of mass described in Section III-A are also parameters.
Three parameters are used for generation of candidate grasps.
A filtering parameter dC and a configuration density parameter
ρ are used to determine the set of candidate grasp positions,
and the set of candidate grasp orientations is a third parameter,
denoted Φ. The algorithm iteratively tests part perturbations;
the number of iterations and part perturbations in each iteration
is set by the parameter M, where M = |M| is the number
of iterations, and Mi is the number of perturbations tested
in iteration i. The total number of part perturbations is
N =

∑
iMi. The final parameter is the grasp elimination

criterion for the grasp analysis. We describe these parameters
and each step of our algorithms below.

A. Evaluating Part Perturbations

For each part perturbation in a part perturbation set, the can-
didate grasps are evaluated to estimate whether they achieve
conservative-slip push grasps with force closure.

1) Conservative-Slip Push Conditions: The algorithm uses
geometric properties of the part to determine all candidate
grasps resulting in conservative-slip pushes aligned with a part
edge for a given gripper width.

The conditions for success of a zero-slip push are as follows:
the part purely rotates about the contact point without slipping,
the part rotates towards stability with the gripper jaw (that is,
the edge rotates toward alignment with the gripper), and once
the gripper has two points of contact, the center of mass must
be between these points. This means that either the gripper jaw
can align with the initially-contacted edge or that the gripper
jaw contacts another edge or a convex vertex.

For a conservative-slip push, the gripper must be guaranteed
to align with the initially-contacted edge. Unlike a zero-slip
push, the exact motion of the contact point is not known, so
any possible contact with another edge or convex vertex cannot
be guaranteed to occur in any particular configuration.

As shown by Mason [36], the motion of a part pushed at
a given contact point is determined by the friction cone and
the direction of pushing. The resulting constraint on candidate
grasps is shown in Fig. 4. In the conservative-slip regions, the
motion of the gripper is guaranteed to be towards a 0 angle and
the center point along the edge. Therefore, the configuration
of the gripper as it slips must stay in the region or enter
the zero-slip region, in which case a zero-slip push occurs.
If the gripper becomes aligned without entering the zero-slip
region, the gripper is guaranteed to cover the center of mass,
so a successful push occurs. Because the slip analysis does
not predict the exact aligned position of the gripper, the force
closure tests for a slip push must succeed over all possible
aligned positions of the gripper.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 5

d

r

b1 b2 10

0°

45°

Contact Position (normalized)0 1

ϕ

ϕ =tan (μ-(d-b)/r)
max 1

-1

-45°C
on

ta
ct

 A
ng

le
 ϕ

 (
de

gr
ee

s)

w

w

Conservative
slip

Zero
slip

A B

C

Fig. 4. Configuration space for fast analysis. The upper half of the figure
shows a gripper of width w contacting the part at position d with (negative)
contact angle φ = 30◦, inverse friction cone bounds b1 and b2 and
perpendicular distance r from the center of mass. Contact with this edge
of the part results in the configuration space shown below it; the shaded area
is the region where a conservative-slip push occurs. The red lines in the lower
region show the configuration-space path for a zero-slip push (A) and possible
paths for two conservative-slip pushes (B and C) from initial contact at the
points shown. Conservative-slip paths are not predicted specifically, but cannot
increase in contact angle or move away from the center of mass. If the path
intersects the zero-slip region, it follows a zero-slip path, shown by path B.

2) Collecting Similar Conservative-Slip Push Configura-
tions: Before evaluating force closure on the candidate grasps
that result in conservative-slip pushes, the conservative-slip
push configurations for those candidate grasps are collected
into sets of similar configurations. A similar configuration
set often contains all the conservative-slip pushes for some
edge of the part. Because our estimation of force closure
for all positions on an edge can be determined analytically,
the estimated closure success of all elements of a similar
configuration set can be evaluated simultaneously, as shown
below.

3) Conditions for Force Closure: Force closure on a part
is achieved when the line between the contact points on each
side lies inside the friction cones of both contact points [38].
If there are multiple contact points on a side, there need be
only one successful contact point for force closure.

In our algorithm, force closure is considered to be achieved
under three conditions, shown in Fig. 5. First, if the second
gripper jaw contacts an edge and the contact direction is within
the friction cone, the gripper completes force closure. Second,
if the second gripper jaw contacts a convex vertex, and this
convex vertex is opposite a section of the first gripper jaw
that contacts the part, force closure is successful. The third

Force closure success

Fig. 5. Force closure modes. Slip closure is shown by the gripper pair on the
right; friction closure is shown by the gripper pair in the middle; and convex
vertex closure is shown on the right.

condition involves slip of the second gripper jaw. If the second
gripper jaw can slip along the edge it contacts and come into
contact with an adjacent edge, and this configuration produces
valid force closure, the gripper is considered successful. While
this condition is restrictive, it can be determined for ranges of
gripper contact points, whereas more general slip conditions
require each grasp to be tested individually. This allows our
conservative-slip push test, which returns a range of possible
aligned positions, to have force closure estimated efficiently
for the entire range.

B. Lower Bound on Probability of Achieving Force Closure

Once the candidate grasp conditions have been evaluated
for all part perturbations, the lower bound on the probability
of achieving force closure for that candidate grasp is estimated
using a weighted percentage, where the estimated success or
failure on a part perturbation is weighted by the probability of
that situation occurring.

C. Adaptive Candidate Grasp Removal

Adaptive grasp candidate removal was added to the algo-
rithm after the observation that the best grasps were already
part of the top candidate grasps after only a few part pertur-
bations had been tested, although their final Q-values were
not predictable from their Q-values earlier in the analysis.
Therefore, the adaptive procedure was developed to remove
unpromising grasps, while still testing the promising grasps to
refine their Q-values.

After all the part perturbations in a part perturbation set
are tested, candidate grasps with low Q-values are removed
from further testing. The criterion for removing a grasp is the
parameter R. The number of grasps eliminated at step m is
R |Gm|, giving the total grasp evaluations as

η =

M∑
m=1

|Gm|Mm (5)

where |Gm| = R |Gm−1| for m = 2, . . . ,M .
The algorithm checks the minimum Q-value of the top

(1−R) |Gm| candidate grasps, Qmin. If the set of candidate
grasps {g |Qg ≥ Qmin} is bigger than (1 − R) |Gm|, ties
between the lowest-Q grasps are broken randomly. The elim-
ination criterion balances maximizing grasp elimination for
faster execution with preventing the elimination of grasps that
may eventually prove to have high Q-values. Other elimination
criteria are possible; ties could be included rather than broken

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 6

randomly, or all grippers above a certain fraction of the current
best Q-value could be retained. However, these criteria do not
guarantee a fixed number of grasp evaluations. We denote
the number of grasp evaluations in the adaptive algorithm
normalized to the number of evaluations in the non-adaptive
algorithm as η̂ = η

N |G1| .

Algorithm 2: Grasp Planning Algorithm. Highlighted line
numbers indicate parallelizable steps.

1 Filter S0 into SC ;
2 Determine nominal contact points P̂ on S0 using SC ;
3 Create candidate grasp set G1 from P̂ and Φ;
4 Create part perturbations S1, S2, . . . , SN of S0;
5 Compute quality of candidate grasps Q using

Algorithm 1;

D. Grasp Planning

The grasp planning algorithm shown in Algorithm 2 uses
two additional steps to generate candidate grasps and part
perturbations, which are then analyzed using our grasp analysis
algorithm.

1) Generating Candidate Grasps: The grasp planning al-
gorithm generates an initial candidate grasp set

G1 = {gij = (p̂i, φj) | p̂i ∈ P̂ , φj ∈ Φ} (6)

While each (p̂, φ) pair could be independently generated,
we use a fixed set of φ values as a parameter, and apply them
to a generated set of p̂ values, using the method in [29], which
takes as parameters a configuration density ρ, a set of approach
angles Φ, and a filtering parameter dC .

We use a scale-invariant parameter to determine the number
of p̂ values (i.e., |P̂ |) for the part, sample density, denoted ρ.
For each edge, a set of p̂ values is generated, linearly spaced
with the number of points equal to ρ× length of edge

mean edge length . To reduce
the effect of complexity on ρ, this is computed on a filtered
shape SC .

The filtered shape SC is generated using an extension of the
Ramer–Douglas–Peucker (RDP) algorithm [19] [42]. The RDP
algorithm smooths a polyline using a distance parameter (here,
dC) that defines the maximum distance a removed vertex can
be from the resulting new edge. In our extension to polygons,
every pair of adjacent vertices are tested by removing the edge
between the vertices, smoothing the resulting polyline, and
forming a new polygon with fewer edges by reconnecting the
two vertices. The filtered polygon with the fewest edges is
selected.

2) Sampling Part Perturbations: Before testing the candi-
date grasps, part perturbations are created by sampling from
the distributions of each vertex and the center of mass. The
number N of part perturbations is determined by a parameter
to the algorithm, M. The part perturbations are collected
into part perturbation sets S1, . . . ,SM , where |Si| = Mi.
In Section V-D we determine that using 100 part perturba-
tions provides reliable results. We explore values of M in
Section V-F.

V. EXPERIMENTS

To test the algorithm in simulation, a set of images of
brackets were found on Google Image Search, and manually
contoured by tracing a polygon over the image. The shapes
produced by this method are shown as Parts A through I
in Fig. 6, along with three simpler, manually-created parts.
A comparison with the approach of ignoring uncertainty is
presented in Section V-B. We evaluated a large number of
parameter combinations, which is detailed in Section V-C.
In Section VI, we report results from testing a Cloud-based
implementation of the algorithm.

Except for where noted, tests used vertex variance of 0.2
times the maximum shape radius (measured from the centroid
to the vertices), a center of mass variance of 0.7 times the
maximum shape radius, a gripper width 25% of the maximum
shape diameter (measured between vertices), and a coefficient
of friction of 0.7. The variance values are above those that
would likely be encountered in a manufacturing setting, but
allow us to more clearly illustrate the benefits of our algorithm.
The tests were run on an four core 3.40 GHz machine with
16 GB of RAM, using MATLAB R2013a, and on PiCloud, a
cloud computing provider.

A. Analysis of Parts

For one parameter combination, the full results for two parts
are shown in Figures 7 and 8, and best grasp for each of the
shapes are shown in Fig. 6. The parameters for these figures
were dC = 0, ρ = 1.5, and |Φ| = 5.

We observed that the algorithm did not choose edges close
to the center of mass when only zero-slip pushes were allowed.
While this result can seem counterintuitive, grasps close to the
center of mass are less robust under our assumptions because
an edge close to the center of mass has a smaller region in
which zero-slip pushes can be achieved. A perturbation in
the center of mass will move this region, invalidating a large
number of zero-slip pushes originally in the region. This effect
was observed on Part D. The maximum Q-value for a zero-
slip push on the two horizontal edges of Part D is 43.6, but
with slip, the maximum is 94.2. The maximum Q-value for a
zero-slip push on the vertical left edge is 90.3. The best grasp
on Part J is on an edge close to the center of mass because the
edges on either end of the part are too angled to each other
for reliable force closure.

Part B, shown in Fig. 8, demonstrates the effect of requiring
a conservative-slip push. Grasps on the edges marked α and
β only have very low Q values, because most of each edge
is outside the inverse friction cone from the center of mass,
meaning any contact will result in slip. The large angle
between edges γ and α causes successful pushes on edge γ
to fail to achieve our conservative force closure conditions.
However, force closure can be achieved against the vertex
labeled τ , and this is reflected in the high Q value of some
grasps on edge γ.

Parts F and H show how the differences in the shape can
have a large effect on the quality of grasps, given equal
uncertainty. Part F has a very high quality grasp that contacts
a flat edge and closes against a small edge with a convex

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 7

Fig. 6. The test set of brackets. The g∗ grasps for parameters dC = 0,
ρ = 1.5, and |Φ| = 5 are depicted. The grasps are indicated with the pushing
jaw in contact with the part, and the closing jaw opposite it away from the
part. “Whisker diagrams” showing detailed results for Parts A and B can be
seen in Figures 7 and 8, respectively. Part G has a problematic shape for
the algorithm. The size of the gripper prevents it from contacting the edges
very near the center of mass. The long, straight edges are outside the inverse
friction cone of the center of mass, meaning an contact on them will slip. The
ends of the part are narrow and consist of several different edges, which, under
perturbation, can prevent conservative-slip pushes or force closure from being
achieved. Part K is also problematic. As shown in Table I, a 100% successful
grasp is possible, but is only found with a very dense grasp set. With the grasp
set used here, the best grasp only has a Q-value of 52.0. This is because the
shape of part means grippers that are in good position relative to the center
of mass are in areas that are very sensitive for force closure.

corner. The best grasp on Part H has the same properties, but
a much lower Q value. The difference between the parts is
that the first edge contacted by the gripper is further from the
center of mass on Part F, which as mentioned above can be
problematic, and that the uncertainty in the opposite edges on
Part H can cause the gripper to contact edges that are more
angled.

Part G has a problematic shape for the algorithm. The size of
the gripper prevents it from contacting the edges very near the
center of mass. The long, straight edges are outside the inverse
friction cone of the center of mass, meaning an contact on
them will slip. The ends of the part are narrow and consist of
several different edges, which, under perturbation, can prevent
conservative-slip pushes or force closure from being achieved.

Part K is also problematic. As shown in Table I, a 100%
successful grasp is possible, but is only found with a very

dense grasp set. With the grasp set used for Fig. 6, the best
grasp only has a Q-value of 52.0. This is because the shape
of part means grippers that are in good position relative to the
center of mass are in areas that are very sensitive for force
closure.

Fig. 7. “Whisker diagram” showing algorithm results for Part A, using dC =
0, ρ = 1.5, and |Φ| = 5. Each line segment represents a candidate grasp,
and indicates its nominal contact point on the part. The line segment indicates
the approach lines for the grasp, and is orthogonal to the gripper jaw. The
length indicating the Q-value relative to other segments. The approach line
with the highest Q-value (i.e., the longest line segment) is labeled, and the
jaw positions for this grasp is illustrated in Fig. 6.

Fig. 8. “Whisker diagram” showing algorithm results for Part B, using dC =
0, ρ = 1.5, and |Φ| = 5. The labels are used in Section V-A to illustrate
various aspects of the results. Each line segment represents a candidate grasp,
and indicates its nominal contact point on the part. The line segment indicates
the approach lines for the grasp, and is orthogonal to the gripper jaw. The
length indicating the Q-value relative to other segments. The approach line
with the highest Q-value (i.e., the longest line segment) is labeled, and the
jaw positions for this grasp is illustrated in Fig. 6.

B. Comparison with Ignoring Shape Uncertainty

We compared our results to a first-order grasp planner
ignoring shape uncertainty, which ran the algorithm simply on
the nominal part, without considering perturbations. Generally,
many candidate grasps are predicted to achieve force closure
on the nominal part. However, when subject to uncertainty,
many of these grasps become considerably less desirable. For
comparison, we ran 84 tests using various parameter values

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 8

Part Q∗ runtime (s) dC ρ |Φ|
A 86.0 47.6 0.03 1.5 5
A 91.3 102.9 0.03 5 5
A 92.3 569.4 0 20 9
A 92.7 48.8 0 1.5 5
B 65.9 19.4 0.09 1.5 5
B 80.6 32.7 0.03 1.5 5
B 80.6 38.3 0.09 3 5
B 85.7 34.8 0 1.5 5
C 76.6 40.4 0.06 1.5 5
C 85.0 31.5 0.09 1.5 5
C 89.1 110.8 0.09 7.5 5
C 90.0 156.5 0 5 5
D 93.2 27.3 0.09 1.5 5
D 97.3 40.9 0.09 3 5
D 98.2 75.8 0.03 7.5 5
D 98.3 219.6 0.06 15 9
E 88.4 28.1 0.09 1.5 5
E 95.6 42.4 0.06 1.5 5
E 98.1 47.4 0.03 1.5 5
E 100.0 71.4 0 3 5
F 94.9 83.0 0 3 5
F 97.3 37.2 0.09 1.5 5
F 98.2 55.2 0.03 1.5 5
F 99.0 281.5 0.03 7.5 9
G 5.2 15.5 0.09 1.5 5
G 7.8 16.8 0.06 1.5 5
G 9.5 32.5 0.09 3 5
G 12.2 61.7 0 3 5
G 12.4 98.8 0.06 5 9
G 15.2 102.2 0.09 7.5 9
G 17.1 184.6 0.06 15 9
H 77.8 30.3 0.09 1.5 5
H 93.2 78.5 0.03 5 5
H 94.0 236.7 0.06 15 9
I 81.1 35.9 0.09 1.5 5
I 98.0 57.5 0.06 1.5 5
I 99.0 118.4 0 1.5 5
I 99.0 1550.4 0 20 9
J 100.0 14.7 0 1.5 5
J 100.0 125.3 0.03 20 9
K 52.0 12.6 0 1.5 5
K 72.2 12.1 0.09 1.5 5
K 83.6 21.9 0 3 5
K 99.0 37.0 0.09 7.5 5
K 99.5 99.9 0.06 15 9
K 100.0 123.4 0 20 9
L 90.6 16.6 0.09 1.5 5
L 90.9 35.5 0 5 5
L 91.0 146.2 0 20 9
L 95.2 17.0 0 1.5 5

TABLE I
SELECTED RESULTS FROM THE SENSITIVITY ANALYSIS FOR PARTS IN

FIG. 6, SHOWING PART NAME, VALUE OF Q∗ , RUNTIME USING MATLAB
R2013A ON AN FOUR CORE 3.40 GHZ COMPUTER WITH 16 GB OF RAM,

FILTERING PARAMETER dC , SAMPLE DENSITY ρ, AND NUMBER OF
APPROACH ANGLES |Φ|, USING µ = 0.7.

(described in Section V-C), and for each run, the candidate
grasps predicted to achieve force closure on the nominal part
were tracked and their final quality compared. On average,
only 4% of these candidate grasps were also the best grasps
after 100 iterations of the algorithm. After 100 iterations, the
average Q-value of these candidate grasps was only 58% of
the value of Q∗.

C. Sensitivity Analysis

We performed a sensitivity analysis on the parameters for
the candidate grasp generation step in the algorithm, which

are the maximum distance for the filtering step dC , sample
density ρ, and the approach angle set Φ.

The number of nominal contact points is critical to maxi-
mizing the value of Q∗ grasps. For a given edge in contact
with the first gripper jaw, force closure depends on the opposite
edges, which define regions where closure is or is not achieved.
With increasing part complexity, the regions become smaller
and more numerous, and edges must be covered more densely
with contact points to ensure that the regions in which force
closure is achieved are found.

To evaluate combinations of values for the parameters, the
parameter space was gridded and tested. For filtering, the
scale-invariant measure used was fraction of maximum part
radius. Increasing values were used until it was judged that
large features of the test parts were being filtered out. For
the approach angles, a wide, dense range of approach angles
were tested, 15 linearly spaced directions from −45◦ to 45◦,
inclusive, along with a high value of points per mean edge and
no filtering. For all parts tested, the maximum magnitude was
never above 13◦. We subsequently chose ±15◦ as the range
bounds. For sample density (ρ), the value was increased until
no further gain in Q∗ was seen, and this was used as an upper
bound.

The parameter grid included four filtering distances, three
sets of approach angles, and seven values for points per mean
edge. The filtering distances were 0 (i.e., no filtering other
than combining collinear edges), 0.03, 0.06, and 0.09. For
approach angles, three sets of linearly spaced points between
−15◦ and 15◦, inclusive, were used, with 5, 9, and 15 points,
respectively. Only odd values were chosen such that 0◦ would
be included. For sample density, the following seven values
were used: 1.5, 3, 5, 7.5, 10, 15, and 20.

The results from the gridded parameter space illustrated
the trade-off between Q∗ and runtime; selected results can
be seen in Table I. Additionally, the discontinuous nature of
force closure on polygonal parts was apparent: holding other
parameters constant, increasing the sample density sometimes
decreased Q∗, when a small region of an edge had the highest
probability, and was alternately hit or missed by the spacing
of the nominal contact points.

D. Number of Part Perturbations

Reducing the set of part perturbations reduces the runtime
of the algorithm, but runs the risk of individual samples having
a large effect on the result. We investigated the effect of this
trade-off by generating 500 part perturbations and running the
algorithm on each sequential subset of 1 to 500 perturbations.
The value of Q∗ over this range can be seen in Fig. 9. In the
first few iterations, there are some candidate grasps that are
predicted to achieve force closure for all part perturbations
tested so far, so the maximum probability is at 1. By the
point where 100 part perturbations had been processed, the
maximum probability was always within 5% of its value at 500
perturbations. Additionally, g∗ stopped changing before 100
perturbations for all but one part (that is, the best grasp was
identified early). This suggests a convergence heuristic: once
the Q∗ stops changing by more than 5% after testing a new

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 9

Fig. 9. Q∗ vs. number of part perturbations evaluated for parts A-I in the
test set. The point at which g∗ stops changing is marked with an asterisk.

Fig. 10. Tolerancing results for selected parts. The best grasps on the
highlighted edge were found with small tolerances shown as the smaller circles
around the vertices with radius two standard deviations (95% confidence
interval). The gripper width used for all parts is shown next to the part.
Tests were performed as described in Section V-E using dC = 0, ρ = 4,
and |Φ| = 5, and for the indicated tests from that section, the tolerance for
each vertex and center of mass is shown along with 100 perturbations of each
part. Parts A and B are shown with tolerances that give comparable Q̂∗ (64.5
and 66.9, respectively), and suggest that friction closure is more sensitive to
increased tolerances. Part D suggests that, relative to Part A, narrow parts
have greater sensitivity to near-edge tolerances.

part perturbation, perhaps measured over a moving window,
the best grasp has likely been found and the algorithm can
terminate.

E. Tolerancing

To test the effectiveness of our algorithm for estimating part
tolerance bounds, we developed a procedure to find tolerance
limits that allow a grasp to stay above a given Q threshold.
Because the variance of different aspects of the part may affect
a grasp to a greater or lesser degree, the variances for the parts
were split into two groups: the variance of the vertices for the
initial contact edge, and the variance of the remaining vertices.
The vertices for the initial contact edge along with the center
of mass determine the success of the stable push, while other
vertices determine the success of closure.

Fig. 11. Effect of increasing tolerances on quality. Tolerance is shown as
vertex variance normalized to the initial variance. Each set of three lines
show the results for Parts A, B, and C. The solid lines show the average Q̂∗
for increasing near-edge vertex variance, keeping other variance constant. The
dashed lines show the average Q̂∗ for increasing values of the non-near-edge
vertex variance, keeping the near-edge variance constant.

To test this tolerance bounding procedure and the effect
of variance on closure, three simple parts were created with
different features. These parts are shown in Fig. 10. Part
A, a simple rectangle, tested closure on a flat edge. Part B
introduced a single convex vertex instead of a flat edge, to test
closure against a vertex. Part C used a set of three vertices to
test the effect of complex edges on closure. A fourth part, Part
D, was created to test the effect of variance on the initial push.
It is a thin rectangle, with the edge to be tested close to the
center of mass, creating a smaller valid region more sensitive
to higher tolerances. The best grasp on the highlighted edge
shown in Fig. 10 was found, and this grasp was tested under
increasing variance for the near-edge vertices and the other
vertices. The center of mass was fixed to the centroid of each
perturbation.

The results for Parts A, B, and C suggest that Q-values are
significantly more sensitive to near-edge variance. As shown in
Fig. 11, as the variance of near-edge vertices increases while
the remaining variances are kept constant, the value of Q∗

reduces significantly. Keeping the near-edge variance constant
while increasing the others had a smaller effect on Q∗, staying
within 14% of its initial value.

While the response of these parts was similar when con-
sidering the relative change of Q∗, the absolute value showed
differences between the parts. The minimum Q∗ for Part A
was 28.2, for Part B, 46.3, and for Part C, 43.9. Part A had
lower Q∗-values because it used only friction closure. Large
movements of the vertices can cause the angle between the
near edge and the far edge to exceed frictional limits. Closure
against a convex vertex is more robust to variance, since such
closure does not depend on an angle with the gripper, and if
it becomes concave, slip closure may allow force closure.

Part D retained Q∗ = 100 for tests with high tolerances in
the opposite vertices and center of mass, but low tolerances
in the adjacent vertices.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 10

Fig. 12. Candidate grasps eliminated by the adaptive candidate grasp removal.
Eliminated grasps are marked in red. The parameters for this test were dC =
0, ρ = 1.5, and |Φ| = 5, R = 0.9, and M1 = 19.

We found that the initial contact edge vertices required
lower variances, suggesting that success of the stable push was
the component of the grasp most sensitive to higher tolerances.
In designing a part, tolerance specifications could be defined
using the results of this maximum allowable variance test.

F. Adaptive Sampling

The adaptive removal procedure introduced two new param-
eters, so we tested these parameters to determine their effect
on the algorithm’s performance.

The adaptive grasp candidate removal step involves a trade-
off between low execution time and high-quality grasps. In
particular, if a fixed number of grasp evaluations are allowed,
then the larger the initial part perturbation set, the more
aggressive the grasp candidate removal step must be. To
explore this tradeoff, we tested the adaptive grasp candidate
removal step by varying the parameters for both initial part
perturbation set size and the grasp elimination criterion. We
used a single grasp reduction step (that is, |M| = 2) to do
initial testing; our tests using more steps are described at the
end of this section.

First, we ran the non-adaptive algorithm (i.e., |M| = 1)
on the dataset of parts from [29]; each of the twelve parts
was tested using twenty separately generated perturbation sets
(giving a total of 120 part/perturbation set combinations),
using dC = 0.06, ρ = 6, and |Φ| = 5, and N = 70. The
value of Q∗ for each test was thus the maximum Q∗ that
could be found by the adaptive algorithm (i.e., it was Q∗max).
Then, for each initial perturbation set size M1 = 1, . . . , 70 all
possible distinct values of the adaptive elimination threshold
were found. For each test, the unique Q-values at the M1-
th iteration were found, and the values of the elimination
threshold that would select those Q-values were found. Then,
for each initial perturbation set size, all of the distinct values of
the adaptive elimination threshold R from all of the tests were
combined into a set, and for each threshold value (which was
determined from a single part/perturbation set), the outcome
of the adaptive algorithm on all of the 120 part/perturbation
sets using that threshold value was analyzed.

To analyze the outcome of the adaptive algorithm on a
part/perturbation set, we used data from the already-run non-

Fig. 13. Tradeoff between execution time and grasp quality, showing Q̂∗

vs. percent of grasp candidate evaluations performed (100× η̂) for multiple
test parts and adaptive parameters. The graph is truncated at 10% on the x
axis because all per-part expected and worst-case values after this have a Q̂∗
of 1. A value of 1 on the y axis indicates the overall best gripper was still
found by the adaptive algorithm. The Pareto curve of average expected Q̂∗
over all parts tested is shown as a solid magenta line, and the Pareto curve of
worst case is shown as a dashed black line. The red and blue lines show the
lower bound of the Pareto curves for per-part expected and worst-case values,
respectively.

adaptive test. At the given M1-th iteration, the grasp reduction
step was simulated from the Q-values calculated previously.
However, because the grasp elimination criterion randomly
breaks ties, it couldn’t be used directly. Instead, the worst-
case and expected values were found. The worst value was
found by retaining the tied candidate grasps with the lowest
final Q-values. The expected value was calculated as the sum
over all combinations of the maximum final Q-value in that
combination weighted by the likelihood of occurrence of the
combination.

Fig. 14. Tradeoff in worst-case quality (color) and execution time (lines) over
parameter combinations. The color of each dot indicates the average worst-
case Q̂∗ for the parameter values. For example, the point in the upper left
represents M1 = 1 and 99.85% of grasps eliminated (i.e., R = 0.0015),
meaning after one part perturbation is tested, one grasp is selected from the
successful grasps on that perturbation, and tested on the remainder of the
perturbations. This point has a Q̂∗ of 0.577. Contours of η̂ between 0.05 and
0.25 are shown. The parameter values at any point along a contour require
the same number of grasp evaluations.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 11

The result of this analysis is shown in Fig. 13. The adaptive
sampling was able to aggressively reduce the candidate grasp
set without reducing Q̂∗. Considering the best parameter
values for each part individually, the results suggest a very low
number of perturbations must be tested to find high quality
grasps. Above η̂ = 0.031 (that is, 3.1% of the possible
grasp evaluations are performed), the expected value of Q∗

was within 10% of the maximum, and the worst case values
reached the maximum by η̂ = 0.08. Averaging Q̂∗ across
all parts for each parameter combination, the performance
reduces slightly: the expected value of Q̂∗ does not reach the
maximum until η̂ = 0.277, and the worst case did not reach
maximum until η̂ = 0.285. However, for η̂ ≥ 0.08 (when the
per-part worst case Q̂∗ reaches 1), the best expected value of
Q̂∗ averaged over all parts was 0.978, and the worst case was
0.926.

This analysis would allow a designer to choose the best
adaptive parameters satisfying design constraints, either reduc-
ing the number of evaluations given a minimum worst case or
expected value, or maximizing worst case or expected value
given a maximum number of evaluations.

Fig. 13 does not indicate what parameter values produce the
displayed Pareto curves. Fig. 14 shows the average worst-case
value of Q̂∗ over all tests for parameter ranges M1 ∈ [1, 10]
and R ∈ [0.85, 1]. The contours of η̂ are shown for several
values between 0.05 and 0.25. Given a low limit on grasp
evaluations, this analysis allows the best parameter combina-
tion satisfying the constraint to be found.

Good grasps are identified after testing a small number of
part perturbations, as shown in our previous work. This allows
the adaptive grasp elimination step to cull unpromising grasp
candidates, and use the remaining part perturbations to refine
the Q-value of the good grasp candidates. We experimented
with using more than one iteration of grasp candidate removal,
but the extra reduction in number of grasp candidates was of
minimal benefit.

VI. CLOUD COMPUTING EXPERIMENTS

We tested the scalability of our algorithm in the Cloud
using PiCloud, a platform that automates high performance
computing through Cloud-based computation using Amazon
EC2 [2]. PiCloud allows for an executable, along with its
environment, to be replicated across any number of nodes in
the Cloud and run in parallel.

Our Cloud-based implementation is modeled on MapRe-
duce [17]. It uses a set of nodes, all started in parallel, to
each process a portion of the part perturbation set for the non-
adaptive algorithm. This corresponds to parallelizing Step 2 of
Algorithm 1, as well as parallelizing the actual perturbation
sampling itself. The results from each node were collected and
combined to produce the algorithm results.

In our tests, the executable was a compiled MATLAB script,
with input parameters specifying the part, algorithm parame-
ters, and number of perturbations to test. The executable was
placed in an environment with the appropriate part data, and
this environment was replicated across all the nodes in the test.
PiCloud would then start all the nodes and run the executable

on each one. The executable outputs a results file; all the
results files were then collated locally to produce the overall
output of the algorithm. The PiCloud nodes used “c2” cores,
which have 800 MB of memory and 2.5 “compute units” [3]
as defined by Amazon for EC2. A compute unit provides “the
equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or
2007 Xeon processor” [1].

A. Measuring Running Time

PiCloud provides the total running time of each node,
which includes the time to start up the node itself as well
as the time to start the MATLAB script. We also measured
the running time of the algorithm within MATLAB (on each
node). However, PiCloud does not have any mechanism for
including node-identifying information with the results files,
we could not match a MATLAB running time to a specific
PiCloud node running time. Therefore, we have two sets
of timing information, one of just the algorithm and one
including the overhead of Cloud-based execution. Because of
the inability to match this information on a per-node basis,
they can only be compared in aggregate.

The total running time of the algorithm when running in
parallel is the longest time taken by any node, which is called
synchronous parallelism. This is because they are all started
at the same time, but the algorithm is only finished once all
nodes have returned their data. We explore an alternative to
this in Section VI-F.

We measured speedup in three values: the average MAT-
LAB runtime and the overall PiCloud and MATLAB runtimes
(that is, the maximum over nodes in each test).

B. Test Runs

Using three configurations, we ran two sets of tests, one to
test the run times over all parts, and one to test the variability
of run times on a single part.

Configuration 1 was dC = 0, ρ = 1.5, and |Φ| = 5.
Configuration 2 was dC = 0.03, ρ = 7.5, and |Φ| = 9.
Configuration 3 was dC = 0.09, ρ = 20, and |Φ| = 15. We
chose Configurations 1 and 3 as corners of the parameter grid
used in Section V-C, and Configuration 2 as midway between
them. Thus Configuration 1 has a very sparse candidate grasp
set, and Configuration 3 has a very dense candidate grasp set.

C. Speedup

The speedup for the average node MATLAB running time
for all parts is shown in Fig. 15. The plot shows that the denser
the configuration, the closer the speedup is to being completely
linear. The best speedups achieved for 500 nodes were 515×
for Part A and 512× for Part C, both with Configuration 3. The
best speedup for the much sparser Configuration 1, however,
were 263× for Part I. These are lower because of overhead
in the algorithm; the average running time for Configuration
3 was 8.2 times longer than for Configuration 1.

The overall running time is dependent on the maximum
node running time, rather than the average, i.e., it is the worst-
case running time. The speedups for overall MATLAB running

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 12

Fig. 15. Average MATLAB runtime speedup vs. number of nodes. The
average, minimum, and maximum are shown for 1, 10, 50, 100, 250, and
500 nodes. The highest speedup is 515×, for Part A with Configuration 3.

time are shown in Fig. 16. The best speedups, 393× for Part
C and 393× for Part A, are much less than for the average
running time. By increasing the number of nodes, the average
running time goes down, but the probability of one node taking
much longer than the average (and thus driving up the overall
running time) goes up. We discuss a strategy to reduce this
effect in Section VI-F.

The speedups for overall PiCloud running time are shown
in Fig. 17. The best speedup, 97×, is nearly an order of
magnitude lower than the MATLAB speedups. The reason for
this is that the PiCloud node startup time is a large overhead,
so even as the MATLAB runtimes reduce, the overall time
taken including the PiCloud node overhead does not decrease
as much.

D. Overhead estimation

Since we could not match PiCloud node running times to
the MATLAB running times, we looked at the aggregate over
each test. For each test, we subtracted the average MATLAB
runtime from the average node runtime. Then, we took the
minimum value over all tests, since this is a lower bound on
the running time. We found this value to be 41.6 seconds.
However, it ranged up to 133 seconds; this variability is a
fundamental characteristic of on-demand computing. It could
be ameliorated by using more expensive reserved Cloud com-
puting infrastructure.

E. Variability

We ran a test to determine the variability of running times.
We used Part A, the same three configurations and five node
numbers used above, and ran each combination of configura-
tion and number of nodes five times. The results are shown in
Table II. We found that the average node runtimes had a larger
variance as the number of nodes increased. For 10 nodes, the
variance was 7.9% of the mean, but this increased up to 20.3%
for 500 nodes. This is likely due to the variance in processing

Fig. 16. Overall (i.e., worst case) MATLAB runtime speedup vs. number
of nodes. The average, minimum, and maximum are shown for 1, 10, 50,
100, 250, and 500 nodes. The highest speedup is 393×, for Part C with
Configuration 3. The speedups are less than for the average times because
with increasing numbers of nodes, the probability increases of a node taking
significantly longer than average, increasing the overall (i.e., worst case)
running time.

Fig. 17. Overall (i.e., worst case) PiCloud runtime speedup vs. number of
nodes. The average, minimum, and maximum are shown for 1, 10, 50, 100,
250, and 500 nodes. The highest speedup is 97×, for Part C with Configuration
3. In addition to lower speedups due to the probability of an outlier that
increases the overall (i.e., worst case) runtime increasing with increasing
numbers of nodes, the overhead of starting a PiCloud node is large relative
to the algorithm running time. We estimate this overhead in Section VI-D.

time for individual perturbations, which are averaged out over
larger sets of perturbations when using fewer nodes.

F. Asynchronous Parallelism

The overall runtime of the algorithm is the maximum node
runtime, since all nodes are started in parallel at the same time,
but the algorithm is only finished once the results from all
nodes are in. With more nodes, even though the average node
runtime may drop considerably, it is more likely for a node
to be further from the mean, driving up the overall runtime
relative to the average. In a production setting, the possibility

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 13

Configuration 1 Configuration 2 Configuration 3

Number PiCloud MATLAB PiCloud MATLAB PiCloud MATLAB

of nodes runtime (s) runtime (s) runtime (s) runtime (s) runtime (s) runtime (s)

10 139.4 ± 9.2 72.6 ± 3.7 1022.2 ± 75.1 944.2 ± 66.5 1109.1 ± 106.6 1023.9 ± 96.1

25 98.1 ± 21.7 29.5 ± 5.4 496.3 ± 77.9 407.8 ± 60.5 197.7 ± 26.6 140.1 ± 19.7

50 74.8 ± 18.0 14.2 ± 2.1 291.5 ± 56.6 208.9 ± 38.1 289.3 ± 39.5 218.3 ± 30.1

100 71.3 ± 18.7 8.0 ± 1.5 195.2 ± 30.5 107.2 ± 15.6 182.3 ± 29.8 106.2 ± 17.7

250 62.8 ± 12.8 4.1 ± 0.8 135.3 ± 18.9 44.1 ± 5.7 118.2 ± 18.7 42.8 ± 6.7

500 60.3 ± 11.5 2.6 ± 0.5 105.7 ± 20.9 20.0 ± 3.8 90.9 ± 19.9 18.8 ± 6.2

TABLE II
RESULTS FOR VARIATION IN RUNNING TIMES FOR CLOUD-BASED IMPLEMENTATION. THE TESTS WERE RUN ON PART A WITH 500 PART PERTURBATIONS

DIVIDED EVENLY OVER THE NODES. CONFIGURATION 1 IS dC = 0, ρ = 1.5, AND |Φ| = 5; CONFIGURATION 2 IS dC = 0.09, ρ = 20, AND |Φ| = 15;
AND CONFIGURATION 3 IS dC = 0.09, ρ = 20, AND |Φ| = 15. EACH TEST WAS RUN FIVE TIMES, AND THE AVERAGE NODE RUNTIMES FOR BOTH

PICLOUD AND MATLAB ARE REPORTED HERE.

Fig. 18. Experimental setup for Object M.

of nodes never completing due to network failures or other
causes must also be taken into account. With this factor
considered, we expected speedups for the overall runtime to
be less than the speedups for the average node runtime.

This method of parallelism is called synchronous paral-
lelism. To improve the overall running time relative to the
average node runtime, we considered the practice of only
waiting for a subset of nodes to finish, called asynchronous
parallelism. A usual approach is to set a time limit, and only
nodes that finish within the time limit are used. However, for
this algorithm, the running time is not well-known in advance.
Therefore, we considered starting a set of nodes to process 500
part perturbations, but only waiting for enough nodes to finish
to obtain 100 perturbations (i.e., 1

5 of the nodes). We tested
this approach using 10, 50, 100, 250, and 500 nodes.

This reduces the vulnerability of runtime to outliers. We
found that on average, this method would have reduced the
overall PiCloud runtime on average 1.43×. The speedup
ranged between 1.04× to 2.00×. It is possible that there is
a correlation between the results of the algorithm and the
PiCloud node runtime; in this case, taking the earliest nodes
to complete may produce biased results. In future work, we
will explore this possibility.

VII. PHYSICAL GRASP EXECUTION EXPERIMENTS

An object was tested with the Willow Garage PR2 robot
[4], a two-armed mobile manipulator. The experimental setup

Fig. 19. Grasps tested for Object M.

can be seen in Fig. 18. Using a whiteboard as a work surface,
the object was imaged and contoured to get the shape using
the OpenCV image processing library. The algorithm was run
using parameters dI = 0.002, dC = 0, ρ = 10, and |Φ| = 5.

For Object M, an electrical plug, three representative grasps
were tested (shown in Fig. 19), with five trial runs each. The
first grasp, with Q = Q∗ = 84.4, achieved force closure for
all five trials. The second grasp, with Q = 54.5, also achieved
force closure for all five trials. The third grasp, with Q =
23.3, caused the object to rotate out of alignment and failed
to achieve force closure for all trials. This grasp failed in the
test because of positioning error in the gripper and in the actual
center of mass versus in the model.

These experiments were performed with a single part, which
means there is no actual variance present. In future work, we
will use 3D printing to create perturbations of a nominal part,
which will allow us to more precisely test the predictions of
our algorithm.

VIII. CONCLUSION

We have presented an approach for quickly analyzing
conservative-slip push grasps on planar parts by finding the
value of a quality metric that estimates a lower bound on the
probability of force closure. This sampling-based algorithm is
well-suited for cloud-based execution as shown in Section VI.
We investigated the number of perturbations needed to reliably
evaluate the quality of a grasp, and the effect of increasing
tolerance on grasp quality. We have also presented an adaptive
elimination procedure to remove low-quality grasps after a
number of part perturbations have been tested. The adaptive
elimination step reduces grasp evaluations by 91.5% while

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 14

maintaining 92.6% of grasp quality. We reported results from
a Cloud-based implementation, obtaining a maximum of 445×
speedup with 500 nodes, suggesting our algorithm scales well
with increasing parallelism.

In future work we will extend our algorithm to other kinds
of uncertainty. This includes part pose, in which the part
location may not be known precisely but an estimate is avail-
able, robot mechanics, where the robot may have imprecise
actuators. We will take advantage of other opportunities for
parallelism in our algorithm, further scaling it in the Cloud.
Our sampling-based approach is a flexible one, and we will
extend it to grasping in 3D, to non-polygonal parts with curved
surfaces, and to multi-DoF grippers.

A. Belief Space-based Optimization
In Section V-E we demonstrated a procedure for finding the

maximum tolerance that would allow for a given desired prob-
ability of success. In an automation setting, however, these two
quantities may each have an associated cost; tighter tolerances
incur higher manufacturing costs, and a lower probability of
success means more grasping failures, also incurring costs.
Because these two quantities are at odds with each other, we
can formulate an optimization problem to determine the best
balance given the costs.

To create this optimization problem we change the tolerance
Σ from a parameter to a variable. The quality of a grasp g on a
part S, Q(g, S,Σ; θ), is then a distribution defined by the tol-
erance Σ. The technique of optimizing over distributions with
the variance in the state is termed a belief space optimization
[28].

We define two costs, the scalar failure cost cF and the
tolerance cost matrix CΣ. The optimal grasp and tolerance
are then found as follows:

g∗,Σ∗ = arg min
g∈G,Σ

cF (1−Q(g, S,Σ; θ)) + CΣΣ

This optimization problem is difficult to solve using the
techniques presented in this paper; if the value of Q is de-
termined using Monte Carlo methods, calculating the gradient
would involve repeated evaluation of the function. While the
expansion of cloud computing infrastructure and capability in
the future may allow sampling-based techniques to calculate
the gradient in a timely manner, in future work we will explore
methods to more efficiently solve this optimization problem.

B. Code and Data Availability
Further information, including code and data, is available

at: http://automation.berkeley.edu/cloud-based-grasping

ACKNOWLEDGMENTS

This work has been supported in part by funding from
Google, Cisco, the UC Berkeley Center for Information
Technology in the Interest of Society (CITRIS) and by the
U.S. National Science Foundation under Award IIS-1227536:
Multilateral Manipulation by Human-Robot Collaborative Sys-
tems. We thank Dmitry Berenson, Melissa Goldstein, Frank
Ong, and Edward Lee, who all participated in this research,
and James Kuffner and Frank van der Stappen for valuable
discussions.

REFERENCES

[1] “Amazon EC2 FAQs,” http://aws.amazon.com/ec2/faqs/\#What is an
EC2 Compute Unit and why did you introduce it.

[2] “PiCloud,” http://picloud.com/.
[3] “PiCloud | Pricing,” http://picloud.com/pricing/.
[4] “Willow Garage PR2,” http://www.willowgarage.com/pages/pr2/

overview.
[5] S. Akella and M. Mason, “Posing polygonal objects in the plane by

pushing,” in IEEE International Conference on Robotics and Automa-
tion. IEEE Comput. Soc. Press, 1992, pp. 2255–2262.

[6] R. Arumugam, V. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F. Kong,
A. Kumar, K. Meng, and G. Kit, “DAvinCi: A cloud computing
framework for service robots,” in IEEE International Conference on
Robotics and Automation, 2010, pp. 3084–3089.

[7] D. Berenson, S. S. Srinivasa, and J. J. Kuffner, “Addressing pose uncer-
tainty in manipulation planning using Task Space Regions,” IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 1419–
1425, Oct. 2009.

[8] R. C. Brost, “Automatic Grasp Planning in the Presence of Uncertainty,”
The International Journal of Robotics Research, vol. 7, no. 1, pp. 3–17,
Feb. 1988.

[9] J. Chen, K. Goldberg, M. H. Overmars, D. Halperin, K. F. Böhringer, and
Y. Zhuang, “Computing tolerance parameters for fixturing and feeding,”
Assembly Automation, vol. 22, no. 2, pp. 163–172, 2002.

[10] J.-S. Cheong, H. J. Haverkort, and A. F. van der Stappen, “Computing
All Immobilizing Grasps of a Simple Polygon with Few Contacts,”
Algorithmica, vol. 44, no. 2, pp. 117–136, Dec. 2005.

[11] J.-S. Cheong, H. Kruger, and A. F. van der Stappen, “Output-Sensitive
Computation of Force-Closure Grasps of a Semi-Algebraic Object,”
IEEE Transactions on Automation Science and Engineering, vol. 8,
no. 3, pp. 495–505, Jul. 2011.

[12] V. N. Christopoulos and P. R. Schrater, “Handling Shape and Contact
Location Uncertainty in Grasping Two-Dimensional Planar Objects,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2007, pp. 1557–1563.

[13] M. Ciocarlie, K. Hsiao, E. Jones, S. Chitta, R. Rusu, and I. Sucan, “To-
wards reliable grasping and manipulation in household environments,”
in Intl. Symposium on Experimental Robotics, 2010, pp. 1–12.

[14] M. Ciocarlie, C. Pantofaru, K. Hsiao, G. Bradski, P. Brook, and
E. Dreyfuss, “A Side of Data With My Robot,” IEEE Robotics &
Automation Magazine, vol. 18, no. 2, pp. 44–57, Jun. 2011.

[15] J. Cornelia and R. Suarez, “Efficient Determination of Four-Point Form-
Closure Optimal Constraints of Polygonal Objects,” IEEE Transactions
on Automation Science and Engineering, vol. 6, no. 1, pp. 121–130, Jan.
2009.

[16] H. Dang and P. K. Allen, “Stable grasping under pose uncertainty using
tactile feedback,” Autonomous Robots, vol. 36, no. 4, pp. 309–330, Aug.
2013.

[17] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Communications of the ACM, vol. 51, no. 1, p. 107,
2008.

[18] M. R. Dogar and S. S. Srinivasa, “Push-grasping with dexterous hands:
Mechanics and a method,” in 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, Oct. 2010, pp. 2123–2130.

[19] D. H. Douglas and T. K. Peucker, “Algorithms for the Reduction of
the Number of Points Required to Represent a Digitized Line or its
Caricature,” Cartographica: The International Journal for Geographic
Information and Geovisualization, vol. 10, no. 2, pp. 112–122, Oct.
1973.

[20] J. Felip and A. Morales, “Robust sensor-based grasp primitive for
a three-finger robot hand,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, Oct. 2009, pp. 1811–1816.

[21] J. Glover, D. Rus, and N. Roy, “Probabilistic Models of Object Geometry
for Grasp Planning,” in Robotics: Science and Systems, 2008.

[22] K. Goldberg, “Algorithmic Automation,” http://goldberg.berkeley.edu/
algorithmic-automation/.

[23] ——, “Orienting polygonal parts without sensors,” Algorithmica,
vol. 10, no. 2-4, pp. 201–225, Oct. 1993.

[24] C. Goldfeder and P. K. Allen, “Data-Driven Grasping,” Autonomous
Robots, vol. 31, no. 1, pp. 1–20, Apr. 2011.

[25] K. Hsiao, L. P. Kaelbling, and T. Lozano-Perez, “Grasping POMDPs,”
in IEEE International Conference on Robotics and Automation. IEEE,
Apr. 2007, pp. 4685–4692.

[26] L.-T. Jiang and J. R. Smith, “A unified framework for grasping and shape
acquisition via pretouch sensing,” in IEEE International Conference on
Robotics and Automation. IEEE, May 2013, pp. 999–1005.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 15

[27] L. Joskowicz, Y. Ostrovsky-Berman, and Y. Myers, “Efficient represen-
tation and computation of geometric uncertainty: The linear parametric
model,” Precision Engineering, vol. 34, no. 1, pp. 2–6, Jan. 2010.

[28] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra”, “Planning and
acting in partially observable stochastic domains,” Artificial Intelligence,
vol. 101, no. 1-2, pp. 99–134, 1998.

[29] B. Kehoe, D. Berenson, and K. Goldberg, “Toward Cloud-Based Grasp-
ing with Uncertainty in Shape: Estimating Lower Bounds on Achieving
Force Closure with Zero-Slip Push Grasps,” in IEEE International Con-
ference on Robotics and Automation. IEEE, 2012, to appear, available
at http://goldberg.berkeley.edu/pubs/kehoe-cloud-icra-2012-final.pdf.

[30] ——, “Estimating Part Tolerance Bounds Based on Adaptive Cloud-
Based Grasp Planning with Slip,” in IEEE International Conference on
Automation Science and Engineering. IEEE, 2012.

[31] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A Survey of Research
on Cloud Robotics and Automation,” IEEE Transactions on Automation
Science and Engineering: Special Issue on Cloud Robotics and Automa-
tion, vol. 12, no. 2, p. To appear, Apr. 2014.

[32] J. Kim, K. Iwamoto, J. J. Kuffner, Y. Ota, and N. S. Pollard, “Physi-
cally Based Grasp Quality Evaluation Under Pose Uncertainty,” IEEE
Transactions on Robotics, vol. 29, no. 6, pp. 1424–1439, Dec. 2013.

[33] E. Klingbeil, D. Rao, B. Carpenter, V. Ganapathi, A. Ng, and O. Khatib,
“Grasping with Application to an Autonomous Checkout Robot,” in
IEEE International Conference on Robotics and Automation, 2011.

[34] J. J. Kuffner, “Cloud-Enabled Robots,” in IEEE-RAS International
Conference on Humanoid Robotics, Nashville, TN, 2010.

[35] K. Lynch, “The mechanics of fine manipulation by pushing,” in IEEE
International Conference on Robotics and Automation. IEEE Comput.
Soc. Press, 1992, pp. 2269–2276.

[36] M. Mason, “Manipulator grasping and pushing operations,” Mas-
sachusetts Inst. of Tech., Cambridge (USA). Artificial Intelligence Lab.,
Tech. Rep., 1982.

[37] G. McKee, “What is Networked Robotics?” Informatics in Control
Automation and Robotics, vol. 15, pp. 35–45, 2008.

[38] V.-D. Nguyen, “Constructing stable force-closure grasps,” in ACM Fall
Joint Computer Conference. IEEE Computer Society Press, 1986, pp.
129–137.

[39] E. Nikandrova, J. Laaksonen, and V. Kyrki, “Towards informative
sensor-based grasp planning,” Robotics and Autonomous Systems,
vol. 62, no. 3, pp. 340–354, Mar. 2014.

[40] M. Peshkin and A. Sanderson, “Planning robotic manipulation strategies
for sliding objects,” in IEEE International Conference on Robotics and
Automation, vol. 4. Institute of Electrical and Electronics Engineers,
1987, pp. 696–701.

[41] R. Platt, L. Kaelbling, T. Lozano-Perez, and R. Tedrake, “Simultaneous
Localization and Grasping as a Belief Space Control Problem,” in
International Symposium on Robotics Research, 2011, pp. 1–16.

[42] U. Ramer, “An iterative procedure for the polygonal approximation of
plane curves,” Computer Graphics and Image Processing, vol. 1, no. 3,
pp. 244–256, Nov. 1972.

[43] A. A. G. Requicha, “Toward a Theory of Geometric Tolerancing,” The
International Journal of Robotics Research, vol. 2, no. 4, pp. 45–60,
Dec. 1983.

[44] A. Rodriguez, M. Mason, and S. Ferry, “From Caging to Grasping,” in
Robotics: Science and Systems, Los Angeles, CA, USA, 2011.

[45] C. Rosales, L. Ros, J. M. Porta, and R. Suarez, “Synthesizing Grasp Con-
figurations with Specified Contact Regions,” The International Journal
of Robotics Research, Jul. 2010.

[46] J. D. Schulman, K. Goldberg, and P. Abbeel, “Grasping and Fixturing
as Submodular Coverage Problems,” in International Symposium on
Robotics Research, 2011, pp. 1–12.

[47] G. Smith, E. Lee, K. Goldberg, K. Bohringer, and J. Craig, “Computing
parallel-jaw grips,” IEEE International Conference on Robotics and
Automation, vol. 3, pp. 1897–1903, 1999.

[48] C.-P. Tung and A. Kak, “Fast construction of force-closure grasps,” IEEE
Transactions on Robotics and Automation, vol. 12, no. 4, pp. 615–626,
Jun. 1996.

[49] M. Waibel, “RoboEarth: A World Wide Web for Robots. Automa-
ton Blog, IEEE Spectrum,” http://spectrum.ieee.org/automaton/robotics/
artificial-intelligence/roboearth-a-world-wide-web-for-robots, Feb. 5,
2011.

[50] T. Zhang, L. Cheung, and K. Goldberg, “Shape Tolerance for Robot
Gripper Jaws,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, vol. 3. IEEE, 2001, pp. 1782–1787.

Ben Kehoe received his B.A. in Physics and Mathe-
matics from Hamline University in 2006. He is now
a Ph.D. student in the ME department at Univer-
sity of California, Berkeley. His research interests
include cloud robotics, medical robotics, controls,
and grasping.

Deepak Warrier is a second year undergraduate
in the Electric Engineering and Computer Science
department at University of California, Berkeley. His
reseach interests include parallel programming, ma-
chine learning, and developing artificial intelligence
algorithms.

Sachin Patil received his B.Tech degree in Com-
puter Science and Engineering from the Indian Insti-
tute of Technology, Bombay, in 2006 and his Ph.D.
degree in Computer Science from the University
of North Carolina at Chapel Hill, NC in 2012.
He is now a postdoctoral researcher in the EECS
department at University of California, Berkeley. His
research interests include motion planning, cloud
robotics, and medical robotics.

Ken Goldberg is Professor of Industrial Engineering
and Operations Research at UC Berkeley, with ap-
pointments in Electrical Engineering, Computer Sci-
ence, Art Practice, and the School of Information. He
was appointed Editor-in-Chief of the IEEE Transac-
tions on Automation Science and Engineering (T-
ASE) in 2011 and served two terms (2006–2009) as
Vice-President of Technical Activities for the IEEE
Robotics and Automation Society. Goldberg earned
his PhD in Computer Science from Carnegie Mellon
University in 1990. Goldberg is Founding Co-Chair

of the IEEE Technical Committee on Networked Robots and Founding
Chair of the (T-ASE) Advisory Board. Goldberg has published over 200
refereed papers and awarded eight US patents, the NSF Presidential Faculty
Fellowship (1995), the Joseph Engelberger Award (2000), the IEEE Major
Educational Innovation Award (2001) and in 2005 was named IEEE Fellow.

