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Abstract— Grasping an object in a cluttered, unorganized
environment is challenging because of unavoidable contacts
and interactions between the robot and multiple immovable
(static) and movable (dynamic) obstacles in the environment.
Planning an approach trajectory for grasping in such situations
can benefit from physics-based simulations that describe the
dynamics of the interaction between the robot manipulator
and the environment. In this work, we present a physics-based
trajectory optimization approach for planning grasp approach
trajectories. We present novel cost objectives and identify
failure modes relevant to grasping in cluttered environments.
Our approach uses rollouts of physics-based simulations to
compute the gradient of the objective and of the dynamics.
Our approach naturally generates behaviors such as choosing
to push objects that are less likely to topple over, recognizing
and avoiding situations which might cause a cascade of objects
to fall over, and adjusting the manipulator trajectory to push
objects aside in a direction orthogonal to the grasping direction.
We present results in simulation for grasping in a variety
of cluttered environments with varying levels of density of
obstacles in the environment. Our experiments in simulation
indicate that our approach outperforms a baseline approach
that considers multiple straight-line trajectories modified to
account for static obstacles by an aggregate success rate of
14% with varying degrees of object clutter.

I. INTRODUCTION

In this work, we consider the problem of grasping and
retrieving an object in a cluttered, unorganized environment
such as a cluttered bookshelf or refrigerator shelf (Fig.
1). Grasping in such situations is challenging because it
might be impossible to directly reach the target object while
avoiding contact with multiple immovable (static) or movable
(dynamic) objects in the environment. Grasp and manipula-
tion planning in clutter should take into account physical
interactions of the robot manipulator with these objects, so
that the robot can move them out of its way without any
undesirable consequences, such as objects toppling over the
edge or getting crushed against a wall.

Physics-based simulation can provide useful cues about
complex interactions between the robot and the environment.
One possibility is to evaluate grasp approach trajectories by
simulating them and selecting the most desirable trajectory.
However, this might require evaluation of a large number
of grasp approach trajectories to fully capture all possible
outcomes in cluttered environments because of the large
number of possible pairwise interactions. While some of
these interactions can be pre-computed and cached [6], this
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Fig. 1: (a) The objective is to grasp a target object (shown in green) on
a cluttered refrigerator shelf. In such situations, interactions with obstacles
(shown in magenta) are unavoidable. (b) Our approach uses physics-based
trajectory optimization to compute a grasp approach trajectory that moves
obstacles out of the way to reach the target object.

comes at the price of making significant assumptions about
the motion of the robot and objects in the environment.

In this work, we present a physics-based trajectory op-
timization method for planning grasp approach trajectories
through cluttered environments. We consider the kinematic
robot state in the trajectory optimization. Since the arm
is fully actuated and is expected to move slowly, we do
not consider dynamics of the arm in this problem. The
configurations of the dynamic obstacles in the environment
follow from rollouts of physics-based simulations. As a
result, the optimization only needs to consider obstacles
in the environment that would be impacted by the grasp
approach trajectory.

We consider an optimization objective that is a weighted
combination of costs that are relevant for grasping in
cluttered environments. The gradient of this objective and
physics-based dynamics is computed using roll-outs of the
physics-based simulation. We take advantage of multi-core
architectures to perform the gradient computation in par-
allel. For trajectory optimization, we extend a dynamic
programming algorithm called iterative LQR (iLQR) [18]



that computes a linear control policy using a quadratic
approximation of the value function around a given trajectory
and iteratively refines the trajectory under forward executions
of the computed policy until convergence to obtain a locally-
optimal trajectory.

We present simulation results for grasping an object in
a variety of environments and under varying degrees of
clutter. Our approach naturally generates behaviors such as
choosing to push objects that are less likely to topple over,
closing the gripper when approaching clutter, recognizing
and avoiding situations which might cause a cascade of ob-
jects falling over, and adjusting the manipulator trajectory to
snake through clutter by pushing objects aside in a direction
orthogonal to the grasping direction (Sec. VI). Our approach
offers an improvement of 14% in the success rate of grasping
in clutter as compared to a sampling-based straight-line grasp
approach trajectories [6] at the expense of additional compu-
tation involved. Our experimental results are promising and
we expect that significant computational speed-ups can be
obtained on large-scale parallel architectures, such as those
offered by cloud computing, to enable real-time planning for
robotic grasping in cluttered environments.

II. RELATED WORK

Robotic grasping has been extensively studied over the
past four decades [2], [28]. Most prior work focuses on
computing grasp quality metrics and planning grasps on
a given target object. However, clutter poses a significant
challenge for grasping in unstructured environments [14].
Prior work has addressed integrated perception and grasping
in clutter where the objective is to grasp objects in an
unorganized pile and place them in a bin [15], [23], but these
methods do not specifically aim to grasp a single target object
in clutter. Novel grasping mechanisms have been proposed
for grasping a single object from a cluttered pile [21]. Leeper
et al. [17] use a human operator for assistance to guide the
robot through clutter with the objective of grasping a target
object. In this work, we do not address the issue of perception
and focus on autonomous grasping of a target object in a
cluttered environment.

Prior work has explored the use of hierarchical approaches
for robot motion planning amid movable obstacles [32], [34].
These methods use sampling-based planning to compute a
high-level plan for the robot to get to a desired target location
by moving obstacles out of the way and rearranging them.
Such an approach has also been applied to the problem of
grasping in clutter. Dogar et al. [7] propose a framework for
push-grasping in clutter that plans a grasp approach trajectory
to the target object by keeping track of a set of movable
objects in the environment. Hauser et al. [10] consider the
problem of removing the minimum number of movable
obstacles for the robot to achieve its objective. Lindzey et al.
[19] consider an extension where objects in the environment
are pushed and rearranged by multiple robots. Kaelbling et
al. [13] present an integrated task and motion planner that
plans backwards from the objective of grasping a desired

target object using a regression-based symbolic planner. Sri-
vastava et al. [31] present a different approach to accomplish
this by integrating a symbolic high-level planner with low-
level kinematic trajectory optimization. Our approach can be
integrated with a high-level planner to improve performance
of grasping in highly cluttered environments where it might
not be possible to reach the target object without explicitly
removing or rearranging obstacles.

Prior work has studied the issue of manipulating objects
by performing pushing operations [20], [24]. Berenson et
al. [1] use a sampling-based planner that considers clear-
ance from obstacles in the environment to plan a grasp
approach trajectory in cluttered environments. Cosgun et al.
[3] and King et al. [16] consider the problem of planning
a series of push operations that would place an object at a
desired target location. Recently, Dogar et al. [6] proposed
a physics-based grasp planning approach that pre-computes
and caches interactions of the robot gripper with obstacles in
the environment. This enables fast evaluations of straight-line
trajectories of the robot gripper to select the most desirable
outcome for grasping in cluttered environments. However,
this work does not consider inter-object interactions, which
are significant in highly cluttered environments, and does not
consider interactions of the manipulator arm with obstacles.
Jain et al. [12] and extensions [25] assume no knowledge
of the environment and use whole-arm tactile sensing with a
reactive controller to reach into unknown, compliant environ-
ments with high degrees of clutter such as foliage. However,
a reactive controller might not perform well in constrained
spaces with rigid, movable obstacles.

Many robotic tasks that include locomotion and manip-
ulation involve contacts with obstacles in the environment.
Kinematic trajectory optimization methods have been pro-
posed that avoid contact with obstacles in the environment
[29], [30]. Recent work has focused on optimizing the
execution speed of an existing trajectory under actuator limits
and contact constraints [11], [26]. Erez et al. [9] and Mor-
datch et al. [22] perform dynamics trajectory optimization
using a smooth contact dynamics model to facilitate gradient
computations. In these works, the feasibility of the contact
forces is included as a penalty term in the optimization cost.
Posa et al. [27] use a direct, also known as collocation,
optimization formulation that formulates the optimization
problem in terms of the contact forces and the state of
all objects in the environment. However, in highly clut-
tered environments, the optimization problem is very high-
dimensional and enforcing the complementarity constraints
arising out of contacts is challenging. Erez et al. [8] also
use iterative LQR for trajectory optimization for humanoid
robots, but this method optimizes over the joint angles and
velocities of the robot and does not consider contacts with
multiple, dynamic obstacles in the environment.

III. PROBLEM DEFINITION

We consider the problem of planning a robot arm tra-
jectory to grasp a target object, as shown in Fig. 2. We
consider a robot consisting of links Li, i = 1, . . . , Nlinks,



Fig. 2: The robot consists of links Li with configuration defined by a vector
of joint angles q. The workspace contains immovable (Si, i = 1 . . . Ns)
and movable (Di, i = 1 . . . Nd) obstacles. The objective is to grasp the
target object Dtarget.

whose positions Li(q) are parametrized by a vector of joint
angles q. The environment is composed of a set of objects
O = {S1, .., SNs

, D1, .., DNd
}, where Sj , j = 1, . . . , Ns

denote static obstacles in the scene (e.g. shelves or walls).
The configuration of the dynamic obstacles are parametrized
as Di(x

t
i), where xti ∈ SE(3) denotes the pose (position

and orientation) of object i at time t. Let X t = {x1, .., xNd
}

be the set of object poses at time t. One of these objects
is the object we want the robot to grasp, denoted as Dtarget.
We are given the initial poses of the dynamic obstacles, X 1.
We also assume access to a physics-based simulator [33]
that provides a smooth and differentiable dynamics function
φ, which is used to calculate X t = φ(X t−1,qt). In this
work, we also restrict ourselves to cases where all dynamic
objects are boxes that rest on a single flat, horizontal surface
and assume that the geometric and inertial properties of the
objects are fully known.

Objective: The objective is to find a feasible grasp ap-
proach trajectory q1, . . . ,q∆ according to the evaluation
criteria defined below, such that the initial robot configuration
q1 is fully outside the work area, and the target object is in
the pre-grasp zone of the robot gripper at time ∆. We assume
that a motion planner can move the robot manipulator into
this initial configuration prior to executing the trajectory.

Evaluation Criteria: The primary distinction between
success and failure in this problem is the effect of the robot’s
actions on objects in the environment. We evaluate this by
up-sampling the candidate trajectories and executing them in
a physics simulation environment. Once the robot trajectory
execution has finished, we continue the simulation for an
additional segment of time to allow objects to come to rest.

We define a successful trajectory as one that moves the
robot manipulator such that the robot can grasp the target
object while all obstacles remain upright and on the working
surface. We define partial success as when the robot is able
to grasp the target object but tips over one or more dynamic
objects in the process, without any objects falling off the edge
of the working surface. All other behaviors are considered

failures, which we divide into the following categories:
(1) Failure to grasp: The robot is not grasping the target

object at the end of the trajectory. For example, the target
object is pushed away from the robot, or the robot has a
different object in its gripper instead.

(2) Objects falling over: At least one object falls over the
edge of the working surface.

(3) Kinematic failure: The trajectory cannot be simulated
to completion, either because the manipulator arm attempts
to move through static obstacles or the dynamic objects get
pushed into the static objects with excessive force.

IV. BASELINE APPROACH

Following Dogar et al. [6], we consider a baseline ap-
proach that samples a number of straight-line trajectories at
different approach angles α to the target (Fig. 2). However,
instead of pre-computing quasi-static interactions, we use a
full physics simulator to evaluate trajectories. This allows
us to consider interactions between objects and interactions
with the full manipulator arm instead of restricting ourselves
to just the robot gripper.

Since all objects are assumed to rest on an horizontal sur-
face, we consider trajectories where the gripper is horizontal
and at a fixed height h above that surface. At this height level,
we sample a series of approach angles α ∈ (αmin, αmax).
The starting gripper position lies on a line l that is outside
the workspace and an end-gripper pose is chosen such that
the target object can be grasped.

Given the gripper poses at the two endpoints of the
trajectory, we use OpenRAVE [5] inverse kinematics solver
to find corresponding joint configurations q1

α and q∆
α . The

IK step is not always possible for all angles α (e.g. when
the approach angle is from the direction of a wall), in
which case we discard the straight line trajectory. We use
linear interpolation to create a full joint-space trajectory
qα = interpolate(q1

α,q
∆
α ).

The trajectories qα may be infeasible due to collisions
with static obstacles. We use a state-of-the-art motion planner
[30] to find collision-free trajectories q′α by solving the
following optimization problem:

min
q1,..,∆

∑
t

∑
k

wkc
t
k(qt,qt−1)

s.t. pgripper(q
∆) = pgripper(q

∆
α )

Rgripper(q
∆) = Rgripper(q

∆
α ),

where pgripper and Rgripper represent the position and rotation
matrix describing the pose of the gripper (i.e. the constraints
are chosen to leave the pregrasp position at time ∆ un-
changed). The objective is a weighted combination of cost
terms ctk with weights wk is the weight for kth cost term.
The optimization problem uses two cost functions: cstatic hull
and cvel, as described in Table I. The term cstatic hull penalizes
penetration between robot links and static obstacles if it is
closer than a distance dsafe. This term is a function of the
convex hull of the robot link from consecutive timesteps
to approximate the volume swept out by the link during



Collision costs

ctstatic hull(q
t,qt−1) =

Nlinks∑
n=1

Nstatic∑
j=1

penetration(

convhull(Ln(qt), Ln(qt−1)), Sj))

ctstatic(q
t,qt−1) =

Nlinks∑
n=1

Nstatic∑
j=1

penetration(

Ln(qt), Sj)

ctdynamic(q
t,qt−1,x) =

Nlinks∑
n=1

Ndynamic∑
i=1

penetration(

convhull(Ln(qt), Ln(qt−1)), Di(xi))

Clutter behavior costs

cforce(q,x) =
1

2
||force(q,x)| |2

cmotion(x) =
∑
i

(pi(xi)− pi(x
1
i ))2

cupright(x) = cos−1(Ri(x) · z)

Grasp constraints
cgrasp(q,x) = distance(pgripper(q), Dtarget(x))

cgrp horiz(q) = cos−1(Rgripper(q) · z)

cgrp open(q) = (qgripper − qgripper open)2

Regularization terms
ctvel(q

t,qt−1) =||qt − qt−1||2

ctacc(q
t,qt−1,qt+1) =

1

2
||qt−1 − 2qt + qt+1||2

1

dt2

Trajectory matching costs
cmatch(qt) = ||qt − qt

ref||
2

cmatch vel(q
t,qt−1) = ||(qt − qt−1)− (qt

ref − qt−1
ref )||2

Definitions
force: Vector of forces between all pairs of objects in the scene.

Does not include internal forces.
penetration: Penetration depth between a pair of objects.

Equal to 0 when the objects are a margin dsafe apart.

TABLE I: Cost terms used in the optimization formulation. The collision
cost terms penalize collisions with obstacles, both static and dynamic, in the
environment. The clutter behavior cost terms penalize forces, deviation from
standing upright, and motion of dynamic obstacles. The grasp cost terms
penalize deviation of the target object from the gripper pre-grasp pose. We
also add regularization terms for smooth manipulator motions and trajectory
matching costs for tracking a reference trajectory.

that time. The regularization term cvel penalizes robot ve-
locity, ensuring smooth output trajectories. We use sequential
quadratic programming (SQP) [30], to solve this optimization
problem starting with the initialization qα. We used weights
of wstatic hull = 80 and wvel = 1 in our implementation.

The performance of this baseline approach can be mea-
sured by evaluating all of the output trajectories q′α in a
physics simulator, and selecting the value of α that yields
the best performance based on the criteria in Sec. III.

V. PHYSICS-BASED TRAJECTORY OPTIMIZATION

Our approach aims to improve on the baseline by consid-
ering the physical behavior of dynamic obstacles. We assume
that they move according to rigid body dynamics, colliding
with the arm and each other. Since the arm is fully actuated
and is expected to move slowly, we do not consider dynamics
of the arm in this problem. The objects start in the initial
location and behave according to dynamics φ. The objects
are unactuated and only move when colliding with the arm

(a) (b) (c)

Fig. 3: (a) Geometry of the robot manipulator arm. (b) Proxy capsule
geometry fitted to conform to the arm geometry is used for planning. (c)
The robot gripper is replaced with a sphere proxy for planning.

or other objects, hence φ couples trajectories of all objects.
We formulate the following optimization problem:

min
q1,..,∆

∑
t

∑
k

∑
i

wkc
t
k(qt,qt−1,xti)

s.t. X t = φ(X t−1,qt), X 1is fixed

The above is a nonlinear control problem with controls
q1,...,∆ and can be solved with existing methods. We use
the popular iLQR method [18], although other methods
can also be applied. The full details of iLQR are outside
the scope of this paper. Briefly, the method starts with an
initial guess for a control trajectory q1,...,∆ (which we can
get from the previous section) and rolls out dynamics φ
using this sequence of controls, resulting in object trajectory
X 1,..,∆. Then a Linear Quadratic Regulator (LQR) problem
is formed by making a linear approximation to dynamics φ
and quadratic approximation to costs ck around X 1,..,∆. The
resulting standard LQR problem can be solved efficiently and
exactly and yields an updated control trajectory q1,...,∆. This
process is iterated until convergence. In our experiments, we
chose to cap the algorithm at 30 iterations, which we found
to be sufficient for convergence.

To form the quadratic approximation to the costs ck, we
must calculate their gradients and Hessians, which we do
analytically for all costs in Table I. To linearize the dynamics
φ, we must calculate Jacobians dφ

dX and dφ
dq , which we do with

finite differencing of step size of 10−6. For object dynamics
simulation we use the MuJoCo [33] physics engine and its
smooth contact model, which provides a differentiable and
smooth dynamics function. To take advantage of smooth
contacts, we replace the PR2 mesh model (Fig. 3a) with a
proxy model made from primitive shapes such as capsules
and spheres (Fig. 3b). Additionally, trajectories used for
initialization will often have the robot gripper accidentally
grasp obstacles. To avoid falling into a local minimum,
the first 10 optimization iterations are run with the gripper
replaced with a sphere proxy (Fig. 3c) that represents the
convex hull of the gripper.

Cost Term static acc force motion upright
Weight 103 10−3 10 10−3 1

Time t ≤ ∆ t ≤ ∆ all all all

Cost Term grasp grp horiz grp open
Weight 103 1 1

Time terminal cost terminal cost terminal cost

TABLE II: Weights and timesteps for objective terms used in our approach
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Fig. 4: Scenes: [a-d] Bookshelf and [e-f] Refrigerator shelf, with various densities of clutter objects. In both cases, the target object is highlighted in green.

Cost Terms: The problem uses the cost terms cstatic and
cacc (Table I), which are similar to the terms used for
the static collision avoidance. We add additional costs to
penalize the failure modes described in Section III. The
cost cforce prevents kinematically infeasible trajectories by
penalizing contact forces for all robot links and obstacles in
the environment. cmotion penalizes falling off the table and
excessive shuffling, and cupright penalizes tipping over. The
terminal costs are cgrasp, which encourages the gripper to be
close to the target object, cgrp horiz, which enforces that the
gripper be horizontal, and cgrp open, which expresses that the
gripper must be fully open at the last timestep.

The weights used for these cost terms, and the timesteps
they were active for, are shown in Table II.

A. Initialization
For our approach, we intend to pass the trajectories q′α

generated by the baseline approach as initializations to the
physics-based planner. However, these trajectories are often
in heavy collision with dynamic obstacles.

To have better-conditioned physical behavior in the ini-
tializations, we run a pre-processing step that attempts to
minimize dynamic obstacle contact. This is done using a cost
cdynamic (Table I), which assumes that the dynamic obstacle
positions xi remain constant and uses the same formulation
as cstatic hull. The costs cstatic hull and cvel from the baseline
approach remain to ensure smooth trajectories that don’t
collide with static obstacles.

B. Post-processing Step
When switching from the proxy PR2 model used in opti-

mization to a mesh PR2 model used in the evaluation, slight
collisions with static obstacles may appear. We therefore
apply a final optimization pass to correct for this behavior.
The costs are cstatic from Table I, a penalty for deviating
from the original trajectory cmatch, and a smoothness term
that penalizes deviating from the original velocity cmatch vel.

VI. EXPERIMENTS

A. Representative Environments

To showcase the behaviors that naturally fall out of our
method, we constructed a series of environments that exhibit
a variety of clutter conditions and object properties. A single
approach angle α was used to construct the baseline kine-
matic trajectory for each run, which was then optimized with
with our physics-based approach. To detect overfitting to the
approximations used in the optimization, trajectories were
simulated with a mesh-based robot model and a hard contacts
(as opposed to the proxy model and soft contacts used
in the planning step). We used the OpenRAVE simulation
environment [5] with the Bullet Physics Engine [4] for
simulating the dynamics. Figs. 5 - 8 show executions of
trajectories that are computed using a baseline approach and
our approach. The following behaviors were observed:

1) The physics-based optimization approach takes into ac-
count differences between the inertial properties of different
objects, which lets it pick trajectories that avoid easy-to-
topple obstacles (Fig. 5).

2) If an object’s aspect ratio makes it easier to topple in
one direction than another, our physics-based approach will
learn to push it from the safer direction (Fig. 6).

3) The physics-based optimization approach is able to
recognize the danger of triggering a cascade of falling
objects. As seen in Figure 7, it finds a trajectory that results
in less harmful object-object interactions.

4) For a highly cluttered scene (Fig. 8), the output tra-
jectory from our approach moves the gripper from side to
side as it moves through the clutter. This is similar to how
humans “snake” their arms around obstacles and push them
aside in a direction perpendicular to the grasp path.

5) In all of the scenes shown, the physics-based planner
opens and closes the gripper at appropriate times as it
moves through the clutter. This is an effective strategy to



Fig. 5: Large and small obstacles: The robot must reach between two obstacles (red) to grasp the target object (green). The baseline approach (top)
interacts with both obstacles, while our approach (bottom) only interacts with the larger, more stable obstacle.

Fig. 6: Pushing sideways: The two obstacles in the lower-left are thin along one dimension, making it easy for them to topple in that direction. The
baseline approach (top) topples one of these objects, while our approach (bottom) generates a more stable interaction by pushing on it sideways

Fig. 7: Cascade: The baseline approach (top) triggers a cascade of falling obstacles in this scene. Our approach (bottom) generates a trajectory that does
not trigger this cascade.

Fig. 8: Snaking path: The baseline trajectory (top) fails for this cluttered scene. The trajectory from our approach (bottom) alternates making contact with
obstacles to the left and to the right of the gripper, pushing them to the side as the arm snakes through to grasp the target.



(a) (b) (c)

Fig. 9: (a,b) Comparison of success rates of both approaches for the bookshelf and refrigerator shelf environment on scenes with varying number of objects.
(c) Average running time of our physics-based trajectory optimization on scenes with varying degrees of clutter.

avoid grasping the wrong object, while also pushing objects
sideways instead of in the direction of the grasp.

B. Quantitative Results

We considered two types of environments: a cluttered
bookshelf and a refrigerator shelf (Fig. 4). The bookshelf
is challenging because there are no walls to keep the objects
from falling off any of the four sides. The refrigerator shelf
is more constrained, limiting range of motion for the robot
arm and the degree to which objects can be pushed around.

Each environment is populated with a number of
randomly-generated boxes. Their size, position, and mass
density are selected uniformly at random within a defined
range. In studying these algorithms, we are interested in
comparing their performance across different levels of clutter.
The bookshelf had 6 clutter levels: 1, 5, 10, 15, 20, or 25
objects (Fig. 4d). The refrigerator shelf had 9 clutter levels:
1, 2, 4, 6, 8, 10, 12, 14, or 16 objects (Fig. 4h). At each
level of clutter, 10 scenes were generated at random, for a
total of 150 scenes. For each scene, 14 choices of approach
angle α were sampled. If an IK solution for an angle could
be found, it was used to initialize the baseline approach. Our
approach was run with the baseline trajectories as inputs.

The resulting trajectories were then executed within the
OpenRAVE simulation environment, using the Bullet physics
engine [4]. The success of each trajectory was scored auto-
matically according to the classification in Sec. III. If any
approach angle α led to a successful trajectory, the scene
was marked as a success. If the best initialization led to only
a partial success, the scene was marked as a partial success.
In all other cases, the scene was considered a failure.

Effect of clutter density: The relationship between clutter
level and success rate for the two scenes are shown in
Figs. 9a and 9b, respectively. For clutter densities of 5 objects
or less, the baseline approach was sufficient to generate
success rates of near 100%. Starting with 6 objects, the
scenes become more difficult for this class of algorithms.
At the other end of the spectrum, the workspace is nearly
completely filled with objects. Grasp approach trajectories
can only be found for those configurations where the target
object is near the front, which explains the low but nonzero
success rates.

Comparison: Table III shows the success and partial
success rates for each scene and algorithm. Our approach
offers a 14% improvement in aggregate across 150 scenes in
both bookshelf and refrigerator environments. In addition,
our approach is able to naturally produce behaviors for
grasping in cluttered environments.

Algorithm Bookshelf Refrigerator Aggregate
Baseline 76.7% (8.3%) 65.6% (5.6%) 70% (6.7%)

Physics-aware 86.7% (10.0%) 83.3% (13.3%) 84.7% (12.0%)

TABLE III: Success rates comparing the two approaches. The cumulative
success rate includes both complete successes and partial successes (shown
in parentheses).

Computation time: Our approach was implemented in
C++ and we run our experiments on a 2.4 Ghz 24-core work-
station. Fig. 9c shows how the running time per initialization
of our physics-based trajectory optimization method scales
with increasing number of objects in the scene. The increase
in running time is due to the large number of pairwise
interactions between objects in the environment.

The computational bottleneck is the gradient computation
of the objective and the dynamics, which is performed in
parallel. The running times of other steps were small in
comparison. Pre/post-processing took less than a second
combined, while evaluating a number of trajectories in Bullet
to select the best one for that scene took ≈ 1 second per
evaluation.

Analysis of Failure Modes: We also classified all of the
918 trajectories returned by each algorithm according to the
failure mode classification outlined in Sec. III. The results are
shown in Table IV. For our data set, the primary failure mode
was failing to grasp the target object, followed by kinematic
infeasibility (such as generating excessive contact forces).
Our physics-based approach was able to reduce both of these.

Outcome Baseline Our approach
Full success 36.9% 48.7%

Partial success 1.1% 2.2%
Failure to grasp 32.9% 27.2%

Objects falling over 1.4% 1.3%
Kinematic failure 27.7% 20.6%

TABLE IV: Trajectory outcome distribution for the two algorithms, across
all trajectories generated for our dataset.



VII. CONCLUSION

In this work, we presented a physics-based trajectory op-
timization method that plans grasp approach trajectories for
grasping in cluttered environments. Our approach considers
interactions of the full manipulator arm with objects in
the environment and naturally generates behaviors such as
closing the gripper when approaching clutter and carefully
pushing objects that are less likely to fall over or trigger a
cascade. Our experimental results in simulation are promis-
ing and indicate that physics-based trajectory optimization
can offer significant benefits in terms of grasp success
rates compared to a baseline approach of straight-line grasp
approach trajectories.

This work opens up several avenues for future work.
The physics-based trajectory optimization incurs significant
computational overhead. However, we can take advantage
of large-scale parallel systems and resources such as cloud
computing to make this feasible for real-time planning.
We currently consider deterministic environments without
uncertainty in actuation and collisions. However, our method
also generates a linear feedback controller that can be applied
to deal with non-determinism. We also plan to integrate our
approach with a perception system for demonstration on a
robotic platform.
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