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Abstract Surgical tasks are complex multi-step sequences of smaller subtasks (often
called surgemes) and it is useful to segment task demonstrations into meaningful sub-
sequences for:(a) extracting finite-state machines for automation, (b) surgical train-
ing and skill assessment, and (c) task classification. Existing supervised methods for
task segmentation use segment labels from a dictionary of motions to build classifiers.
However, as the datasets become voluminous, the labeling becomes arduous and fur-
ther, this method doesnt́ generalize to new tasks that dont́ use the same dictionary.
We propose an unsupervised semantic task segmentation framework by learning “mile-
stones”, ellipsoidal regions of the position and feature states at which a task transitions
between motion regimes modeled as locally linear. Milestone learning uses a hierar-
chy of Dirichlet Process Mixture Models, learned through Expectation-Maximization,
to cluster the transition points and optimize the number of clusters. It leverages tran-
sition information from kinematic state as well as environment state such as visual
features. We also introduce a compaction step which removes repetitive segments that
correspond to a mid-demonstration failure recovery by retrying an action. We evalu-
ate Milestones Learning on three surgical subtasks: pattern cutting, suturing, and nee-
dle passing. Initial results suggest that our milestones qualitatively match manually
annotated segmentation. While one-to-one correspondence of milestones with anno-
tated data is not meaningful, the milestones recovered from our method have exactly
one annotated surgeme transition in 74% (needle passing) and 66% (suturing) of total
milestones, indicating a semantic match.

1 Introduction
There is a growing corpus of both trajectory and sensor data from robot-assisted min-
imally invasive procedures (RMIS). Numerous data-driven methodologies for RMIS
have been proposed in recent research including: extraction of finite-state machines for
automation [9, 17, 18], surgical skill assessment [16], and task classification [27, 30].
Surgical demonstrations, repeated executions of a particular task in a consistent envi-
ronment by a human teleoperator, are a useful type of RMIS data. However, even in a
consistent environment, training models on raw trajectory and sensor data is challeng-
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Fig. 1: Primary steps in milestone learning: (1) identify change points in multimodal demonstra-
tions by using kinematic and environment features, and (2) cluster them into milestones. The result
is a set of clusters in state-space. Milestones signify transitions in phases across the examples.

ing as most surgical tasks are complex, multi-step procedures. An important first step
is segmentation, which allows for local modeling of subtasks. While segmentation of
surgical data is a well studied problem [16, 24, 30], existing methods are supervised.
Supervised segmentation relies on either manually annotated example segments, or
a dictionary of pre-identified surgical motions (“surgemes”). Acquiring a sufficient
amount of labeled training data to span all possible events in the demonstrations can
be time-consuming.

In this paper, we explore applying an unsupervised methodology to segment sur-
gical tasks into smaller phases. The goal is to learn the consistently recurring spatio-
temporal transitions in a series of demonstrations without a motion dictionary or la-
beled segments. Unsupervised segmentation allows for more robustness to changes in
motion or environment without having to provide more labeled training data. This is
particularly useful for building finite state machines for automation, which currently
requires time-consuming manual analysis of surgical videos and trajectory data[18].

Unsupervised segmentation methods rely on an assumed structure of the data, typ-
ically local linearity as in autoregression [20, 28], to group together time points that
share that same structure. Likewise, in this work, we consider a locally linear model.
However, the RMIS setting presents new challenges not considered in prior work. First,
the relevant features for surgical segmentation are multimodal. Recent results have es-
tablished the benefit of using both kinematic data and video in supervised segmenta-
tion [12, 25]. Second, surgical tasks are often long, multi-step procedures with a large
temporal variation. One potentially challenging feature of surgical demonstration data
is retrial-until-success operations. For example, a human tele-operator may continu-
ously try to pass a needle through a loop and repeat until she succeeds. There might be
a varying number of retrials in different demonstrations, and we would like to identify
and eliminate the failures.

To address these challenges, we present milestone learning. Each milestone is a
region of the state-space (including both robot pose and visual features) where demon-
strations transition between locally linear motion regimes. We use two visual features
in all three tasks: object grasp events and surface penetration. The additional features
allow for greater discrimination of robot actions and effects on the environment, and
we evaluate the results with and without the features in figure 3. Since the primary fo-
cus of this work is evaluation of milestone learning framework we use visual features
annotations, and defer autonomous surgical perception to future work. However it is
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worth noting, that both of our visual features can be automatically constructed based
on recent computer vision results [15].

As illustrated in in Figure 1, milestones are learned with a hierarchical model:
1. Change Points: Identify locally linear transition regimes and mark change points.
2. Compaction: Remove segments that correspond to failure and retrial phases.
3. State Clustering: The remaining change points (after compactions) are clustered
with respect to the robot’s state at the change point.
4. Time Clustering: Within each state cluster, change points that happen at similar
times are clustered. The highest level of clustering results in the milestones.

The hierarchy differentiates milestones from segmentations described in existing
literature, as milestones are clusters of segment endpoints. Milestones define impor-
tant transition regions for a task and not just a single trajectory. Milestones address the
time variation problem in two ways: the compaction step ensures that between mile-
stones there are the same number of actions, and the temporal clustering allows for
continuous noise (i.e., slightly faster or slower). They are robust to small amounts of
temporal distortion both discrete and continuous. However, this hierarchical model is
not without its own challenges. In a typical clustering formulation like K-Means or
a Gaussian Mixture Model, we would have to select the number of clusters. To ad-
dress this concern, we leverage a non-parametric model called a Dirichlet Process, that
places a prior probability on the number of clusters that adjusts with incoming data.
Contributions:
1. An unsupervised semantic task segmentation technique called “milestone learning”
that uses a hierarchy of Dirichlet Process Mixture Models to identify spatio-temporal
regions where demonstrations transition between locally linear regimes. To capture
robot-environment interactions, we leverage kinematic data

(
x(t)

)
with a set of envi-

ronment features
(
z(t)

)
obtained by fusing kinematic and visual information.

2. A compaction procedure which removes repetitive segments that correspond to a
mid-demonstration failure recovery by multiple retrials of an action.
3. We evaluate our method on three surgical subtasks: pattern cutting, suturing, and
needle passing; and compare with manually annotated segmentation.

2 Related Work
Segmentation in Vision and Machine Learning: Hierarchical segmentation mod-
els have been widely applied in computer vision [6, 11]. Each level of the hierarchy
coarsens clustering, leading to different segmentation abstractions. As in our work,
unsupervised approaches rely on identifying locally linear structures as in [4], where
videos are modeled as transitions on a lower-dimensional linear subspace and segments
are defined as changes in these subspaces.

Unsupervised segmentation models have also been well studied in the Machine
Learning community. Willsky et al [28] proposed the Beta-Process Autoregressive
Hidden Markov Model (BP-AR-HMM). This model fits an autoregressive model to
time-series, where time t +1 is a linear function of times t− k, . . . , t. The linear func-
tion transitions according to an HMM, and to avoid the extreme quantity of hyper-
parameters, they use a Beta-Process prior on the transitions. BP-AR-HMM model also
allows for multiple active linear regimes at any instant of time. While, our method
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models the linear function in terms of only one previous time step, and only one lin-
ear regime is active at a time. It is worth noting that the increased expressiveness of
the BP-AR-HMM model comes at a cost of additional training data. Our experimental
results suggest that our model is better conditioned on smaller datasets.
Segmentation in robotics: Robotics often poses challenges not addressed in vision.
For example, many vision approaches are not robust to multiple moving objects [7].
One class of segmentation problems that has been extensively studied is Switched
Linear Dynamical Systems (SLDS) [1, 14, 29]. Additionally, studies explore using
HMMs to consider sequeneces of segments [2, 3, 12, 26]. However, most of the HMM
work has focused on supervised segmentation, where segments are learned from a
small set of labeled examples.

To apply HMM-style models to the unsupervised setting, we require hierarchies
features, as HMMs model both global and local structure. Hierarchical models are
a key part of unsupervised segmentation, as they allow for aggregations at different
levels of abstraction. Konidaris et al. [10] proposed a technique called skill trees for
reinforcement learning. While exploring a different problem, Konidaris et al. apply
a hierarchical clustering methodology to learn the trees. Niekum et al. [21] apply a
Bayesian non-parametric model (BP-AR-HMM) to segment demonstrations (a time-
series of robot poses). After segmentation, they normalize each segment in a relative
pose space w.r.t to each object in the environment. When these objects change, they can
stitch the relative poses back together. Like the BP-AR-HMM model, this line work
relies on a switched autoregression called, Piecewise ARX, where segments transition
between different autoregression regimes. In this paper, we argue that surgical robotics
requires additional environment specific features to capture the manipulation tasks and
we evaluate this methodology against [21].
Motion Primitives and Learning From Demonstrations: Discrete step representa-
tion of tasks at different levels of hierarchy is key for interaction and learning both on
part of teacher and learner. In robotics, learning such task representations are essential
for capturing instructive demonstrations and generalization over multiple demonstra-
tions [19]. A relevant line of work is motion primitive-based path planning and learn-
ing from demonstration (LfD) frameworks. Motion primitives are higher level actions,
that are used to discretize the action space. Using motion primitives in LfD was ini-
tially proposed by Ijspeert et al. [8]. They argued that while LfD was a theoretically
attractive model, albeit in practice, it suffered inefficiency in high-dimensional action
spaces. They proposed a model where parametrized the action space in terms of motor
primitives and learned a policy over the parameters rather than the high-dimensional
action space. This work was extended by Pastor et al. [22], who proposed Dynamic
Motion Primitives (DMP) which stitch together motion primitives into policies.
Surgical Task Recognition: In Surgical Robotics, researchers have studied the related
problem of classifying and evaluating tele-operated surgery. This is often done with a
domain specific high-level motion primitives for surgery called “surgemes”. In Lin et
al. [16, 27], the authors take a 78-dimensional state space of da Vinci manipulator mo-
tions and use Linear Discriminant Analysis (LDA) to project this state space into a
6-dimensional space in which they can separate clusters of surgical motions and asso-
ciate the motions with surgemes. Zappella et al. [30] explored this problem using both
Kinematic and Video data. Given manually segmented videos, they use features from
both the videos and kinematic data to classify surgical motion. Quellec et al. [23] pro-
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Fig. 2: 1. Circle Cutting: (a) Notching to begin a cut, (b) Cutting clockwise, and (c) Counter
clockwise cut to finish.
2. Needle Passing: (a) Pass needle through a loop (b) pull needle through (c) hand off the needle.
3. Suturing: (a) Penetrate one of the points, (b) Pass needle through the tissue phantom, (c) pull
needle out of the phantom, (d) hand off the needle.

pose segmentation and recognition of surgical tasks in cataract surgery videos. Their
method reuses previously archived videos to automatically analyze the current surgery,
by analogy reasoning. Tao et al. [25] also propose a segmentation and recognition of
surgical tasks using semi-markov conditional random fields on surgical kinematic and
video data. This entire line of work requires some level of supervision either through
a dictionary of surgemes or annotated example demonstrations.

3 Problem and Background
In this work, we evaluate our segmentation methodology on three tasks: circle cutting,
needle passing, and suturing (Figure 2). To introduce the concepts and definitions in
the work, we will use the circle cutting as a running example. In this task, a circle is
marked on a sheet of gauze. The robot has one arm that is fitted with a cutting tool,
and it has to cut along the circle. It first grips the gauze with the non-cutting arm (left),
then uses the cutting tool to penetrate the gauze and cut a notch. Using this notch, it
cuts along the circle.

3.1 State Space
Robot: We denote the robot’s configuration at every time t with x(t). In this work, this
configuration is the pose of the end-effector which is a vector of the 3D translational
position and 3D rotational position. For multilateral tasks, we apply our methodology
independently on each arm.
Manipulation Features: At every time t, there is a feature vector z(t) which repre-
sents observations of the environment by the sensors. We use the same features for all
three of our tasks:

1. Gripper grasp. 1 if there is an object between the left gripper, 0 if not.
2. Plane Penetration. If the robot has penetrated work surface, then the feature value

is the depth of penetration with respect to the plane. Otherwise, the value is 0.

For initial experiments, we manually identified the features in associated frames. These
features can be automatically constructed, for example in Lea et al. [15], the authors
track a surgical needle in a bounding box which is sufficient to determining whether it
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is grasped by the gripper. In this work, we do not want to conflate the perception prob-
lem and the unsupervised segmentation problem so we defer automatic construction
of the features to future work.

To make z(t) more concrete, let us consider our running example circle cutting
task. During notching, Gripper grasp is 1, and the plane penetration feature is the
penetration depth if the vision system detects the gauze is successfully notched. During
cutting the Gripper grasp feature is 1, and the plane penetration feature is the vertical
displacement from the plane. For the three tasks that we explore experimentally (circle
cutting, needle passing, and suturing), these features are sufficient for segmentation.

In the rest of the paper, we will refer to the “state” as the augmented state of both
the robot configuration and the manipulation features denoted by boldface x:

x(t) =
(

x(t)
z(t)

)
3.2 Milestones
In this work, we address the problem of task segmentation using an abstraction called
milestones. We are given a set of demonstrations D = {di}. Each demonstration is
a time-series of states x(t). We model demonstrations as locally linear, that is state
transitions linearly between time steps, and the transition can be time dependent with
a finite set of transition functions shared by all demonstrations. There is also an i.i.d
zero-mean additive Gaussian noise process W (t) which accounts for both model-error
and observation error.

x(t +1) = Aix(t)+W (t) : Ai ∈ {A1, ...,Ak}
Milestones are clusters of in state-space and in time that signify transitions between

locally linear regimes in the time series x(t). Intuitively, either the robot is moving
differently than before or it is manipulating its environment differently than before.
Milestones are thus a tuple of an ellipsoidal (follows from the Gaussian model) region
of state-space and a time interval.

Problem 1 (Milestone Clustering). Given a set of demonstrations D , where each
demonstration di is a time-series of states x(t), find a set of milestones M . Each
mi ∈M has an ellipsoidal region of state-space where demonstrations transition and a
interval of time at which the transition happens.

4 Milestone Clustering
Our algorithm has four basic steps, as described following:

1. We define a column vector of the current state and the next state n(t) =
(x(t+1)

x(t)
)
.

We cluster the vectors n(t) and change points are times when n(t) is in a different
cluster than n(t +1). (Section 4.2).

2. The set of change points define segments in each demonstration. We remove i.e.,
compact, consecutive segments that are overly similar. (Section 4.3)

3. W cluster the remaining change points in the state space x(t +1). (Section 4.4)
4. We cluster the change points in each cluster temporally. (Section 4.5)
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4.1 Background: Bayesian Statistics
One challenge with clustering is hyper-parameter selection, such as the number of
clusters. Recent results in Bayesian statistics can mitigate some of these problems. The
basic recipe is to define a generative model, and then use Expectation Maximization to
fit the parameters of the model to observed data. The generative model that we will use
is called a mixture model, which defines a probability distribution that is a composite
of multiple distributions.

One flexible class of mixture models are Gaussian Mixture Models (GMM), which
are described generatively as follows. We first sample some c from a categorical dis-
tribution, one that takes on values from (1...K), with probabilities φ , where φ is a K
dimensional simplex:

c∼ cat(K,φ)

Then, given the event {c = i}, we specify a multivariate Gaussian distribution:
xi ∼ N(µi,Σi)

The insight is that a stochastic process called the Dirichlet Process (DP) defines a dis-
tribution over discrete distributions, and thus instead we can draw samples of cat(K,φ)
to find the most likely choice of K via EM. The result is the following model:

(K,φ)∼ DP(H,α)

c∼ cat(K,φ)

X ∼ N(µi,Σi)

After fitting the model, every observed sample of x∼X will have a probability of being
generated from a mixture component P(x | c = i). Every observation x will have a most
likely generating component. It is worth noting that each cluster defines an ellipsoidal
region in the feature space of x, because of the Gaussian noise model N(µi,Σi).

We denote this entire clustering method in the remainder of this work as DP-GMM.
We use the same model at multiple levels of the hierarchical clustering and we will
describe the feature space at each level. We use a MATLAB software package to solve
this problem using a variational EM algorithm [13].

4.2 Change Point Identification
The first step is to identify a set of change points for each demonstration in our demon-
strations D . In the previous section, we introduced the following demonstration model:

x(t +1) = Aix(t)+W (t)
Where W (t) is i.i.d Gaussian noise. To learn this model, we can apply DP-GMM to
the following vectors: n(t) =

(x(t+1)
x(t)

)
. Each cluster signifies a different “locally linear”

regime. When n(t) is in a different cluster than n(t + 1), we call this point a change
point. For every demonstration there will be a set of times at which there is a transition
between locally linear regimes.

4.3 Change Point Compaction
Once we have change points for each demonstration, the next step is to remove change
points that correspond to retry-until-success actions, which are prevalent in surgical
demonstrations. We model this behavior as consecutive linear regimes oscillating, i.e.,
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transition from i to j and then j to i. To account for this, for each demonstration,
we define a segment s( j)[t] of states between each change point. If two consecutive
segments are similar, we only keep the latest change point.

The challenge is that s( j)[t] and s( j+1)[t] may have a different number of observa-
tions and may be at different time scales. To address this challenge, we apply Dynamic
Time Warping (DTW), which uses dynamic programming to find a most-likely time
alignment of the two segments. Let s( j+1)[t∗] be a time aligned (w.r.t to s( j)) version of
s( j+1). Then, after alignment we define the L2 metric between the two segments:

d( j, j+1) =
1
T

T

∑
t=0

(s( j)[i]− s( j+1)[i∗])2

When d ≤ δ , we compact two consecutive segments. δ is chosen empirically and a
larger δ leads to a sparser distribution of change points, and smaller δ leads to more
change points. However, since we are removing points from a time-series this requires
us to adjust the time scale. Thus, from every following observation, we shift the time
stamp back by the length of the pruned segments.

4.4 State-Space Clustering
After compaction, there are numerous change points at different locations in the state-
space. At each change point t there is a state x(t). If we model the states at change
points as drawn from a GMM model:

x(t)∼ N(µi,Σi)

Then, we can apply the DP-GMM approach to cluster the state vectors at the change
points. Each cluster defines an ellipsoidal region of the state-space space.

4.5 Time Clustering
Without both space and time, the transitions may be ambiguous. For example, in circle
cutting, the robot may pass over a point twice in the same task. The milestone clus-
tering problem clusters these change points together in both space and in time. The
challenge is that we cannot naively use time as another feature, since it is unclear what
metric to use to compare distance between

(x(t)
t

)
. However a second level of clustering

by time within each state-space cluster can overcome this issue.Within a state cluster,
if we model the times which change points occur as drawn from a GMM:

t ∼ N(µi,σi)

then we can apply DP-GMM to the set of scalar values of times {t}. This groups
together events that happen at similar times during the demonstrations. The result is
clusters of states and times. Thus, a milestone mk is defined as tuple of an ellipsoidal
region of the state-space and a time interval:

mk =

(
ellipse(µk,Σk), [t− ε, t + ε]

)
�

One advantage of the DP-GMM approach is that it allows us to cluster without
specifying the number of clusters a priori. Even so, we may have many small clusters
of outlier transition points. We found that in practice, we could prune the clusters by
setting a rule that every cluster has to have a transition point from ρ% of the demon-
strations (e.g 80% used in this work), and removed clusters that did not satisfy this
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criterion. Like δ , ρ is another user-defined parameter for the algorithm which is set
empirically. A larger ρ means less milestones and a smaller ρ means more milestones.

5 Applications of Milestones
Our framework is motivated by three potential applications of milestones as described:

1. Unsupervised Task Classification: The set of learned milestones divides a task
into a small set of segments. We can apply this model to classify segments of a new
demonstration, which is an inverse problem from the learning problem. The first step is
to generate the transition features n(t) =

(x(t+1)
x(t)

)
for this new demonstration. Then, we

assign each n(t) to the mixture components learned in our milestone model to identify
the change points.

The algorithm is iterative starting at the earliest change point. We assign each
change point to a milestone if it falls in the spatial region and temporal interval. If
a preceding change point assigned to a milestone and the current change point falls
within the same milestone’s spatial region (but not necessarily the temporal interval),
we replace the assignment with the later change point. At the end there at most one
change point assigned to a milestone, and thus defines a segmentation that follows
from our hierarchical model.

2. Features For Skill Assessment: While the corpus of surgical data is growing,
problems in this domain (such as skill assessment) often have very high-dimensional
feature spaces and a relatively small number of demonstrations. Like other unsuper-
vised learning techniques, milestones can also be used for low-dimensional feature
learning. The event of reaching or missing a milestone in a task can be an important
feature for classification, rather than using a very large feature space with many poten-
tially irrelevant features. Milestones synthesize the most important transitions from all
of the demonstrations.

3. Finite State Machines for Automation: Milestones are an abstraction that aid in
the development of Finite State Machines. FSMs are widely applied in the automa-
tion of surgical subtasks [9, 17, 18]. The challenge is identifying important states for
error-handling and recovery. Milestones naturally describe transitions where either the
robot’s state or interaction with the environment is transitioning. These are often the
points where failures happen and the automation needs recovery logic.

6 Results and Discussion
We first evaluate the performance of our change point identification model by com-
paring against an existing segmentation model, BP-AR-HMM [21]. Next, we evaluate
whether our milestone clusters correspond to manually annotated task structures. Then,
we evaluate the sensitivity of the framework to compaction and pruning. Finally, we
evaluate the match of the learned segments with the manually annotated surgemes in
the JIGSAWS dataset [5].

6.1 Evaluation Tasks
Circle Cutting: In this task (Figure 2.1), we have a 5cm diameter circle drawn on a
piece of gauze. The first step is to cut a notch into the circle (Figure 2.1a). The second
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Fig. 3: In this figure, we plot the change points identified by the different methods. (a) First, we
illustrate the circle cutting task conceptually. (b) We apply the BP-AR-HMM technique segmenting
only on end-effector pose. (c) Next, we evaluate apply BP-AR-HMM to the multimodal features.
In the red box, we mark a key transition point (transition from clockwise to counterclockwise cut)
that is not detected without the features. (d-e) We run our technique with the DP-GMM with and
without the features and find tighter clusters of change points.

step is to cut clockwise (Figure 2.1b). Next, the robot transitions to the other side cut-
ting counter clockwise (Figure 2.1c). Finally, the robot finishes the cut at the meeting
point of the two incisions. As the left arm’s only action is maintain the gauze in tension,
we exclude it from the analysis. For the circle cutting task, we collected 10 demonstra-
tions by non-experts familiar with operating the da Vinci Research Kit (dVRK).
Needle Passing: We applied our framework to 40 demonstrations of the needle passing
task. Figure 2.2 illustrates the three main steps of this task which are repeated 4 times
for each of the loops. In Figure 2.2a, the robot passes a needle through a loop using
its right arm, then its left arm to pull the needle through the loop as in Figure 2.2b.
Finally, the robot hands the needle off from the left arm to the right arm (Figure 2.2c).
Suturing: Next, we explored a 4 throw suturing task. We illustrate the task in Figure
2.3. Using the right arm, the first step is to penetrate one of the points on right side
(Figure 2.3a). The next step is to force the needle through the phantom to the other
side (Figure 2.3b). Using the left arm, the robot pulls the needle out of the phantom
(Figure 2.3c), and then hands it off to the right arm for the next point (Figure 2.3d).

6.2 Experiment 1. Segmentation Model Evaluation
We evaluate the change point model described in this work against a recently proposed
algorithm (BP-AR-HMM [21]). There are a few main differences between BP-AR-
HMM model and our model (which we call DP-GMM). First, BP-AR-HMM was only
applied to the robot state-space x(t), and in this work, we argue that augmenting the
state with the additional features z(t) improves change point detection. Next, our model
compacts together similar change points based on DTW. Finally, while BP-AR-HMM
is also based on a non-parameteric bayesian process but it has many more parameters
to learn as it models multiple simultaneously active dynamical regimes.

We evaluate these differences on the circle cutting task as seen in Figure 3. In Fig-
ure 3a, we illustrate a conceptual illustration of the circle cutting task on a planar work
surface. In Figure 3b, we first apply BP-AR-HMM to only the robot states. At each
point where the model transitions, we mark the end-effector (x,y,z) location (note that
the model is trained on poses in SE(3)). While the change points do recover some
of the task structure they are not well clustered and there are many outliers. Next, in
Figure 3c, we apply BP-AR-HMM to the multimodal states z(t) in addition to x(t).
These additional states reduce the number of outliers dramatically. In particular, we
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show a region (red box) to highlight the benefits of these features. When the circle task
crosses over it has to re-enter the notch point and adjust to cut the other half of the
circle. When only using the end-effector position, the locations where this transition
happens is unreliable as operators may approach the entry from slightly different an-
gles. On the other hand, the use of a gripper contact binary feature clusters the change
points around the point at which the gripper is in position and ready to begin cutting
again. Figure 3d, illustrates the benefits of our DP-GMM model over BP-AR-HMM
even without the extra features. DP-GMM uses the combination of the Gaussian Mix-
ture clustering and compaction, and gives fewer & more tightly clustered transitions.
Figure 3e, finally shows the entire model we use in this paper, DP-GMM with the en-
vironment features. This model gives the tightest clustering & the fewest number of
change points.

To give some intuition on why we get improved results, we illustrate the trajectories
of the 10 cutting demonstrations in Figure 4. We find that the trajectories are quite
noisy. The compaction step in conjunction with our DP-GMM clustering allows us to
prune out oscillations between two dynamical regimes, i.e., the operator moves off the
circle and then compensates by moving back. We evaluate the benefits of compaction
in more detail in the subsequent experiments in section 6.5.

Fig. 4: We illustrate the variations in the cir-
cle cutting demonstrations visualized in two
views (X-Y and X-Y-Z).These variations re-
sult in non-essential transitions in manually
annotated surgemes. Our method, DP-GMM
attempts to smooth out the noise with the use
of compaction and pruning, and learns con-
sistently recurring transitions as milestones.

6.3 Experiment 2. Milestone Evaluation
Next, we evaluate how these change points cluster into milestones.
Circle Cutting: We revisit the circle cutting change points from the previous exper-
iment and evaluate how the change points cluster into milestones. In particular, we
want to evaluate how well change points correspond to manually identified segments.
In Figure 5a, we mark 6 manually identified transitions points for this task from [18]:
(1) start, (2) notch, (3) finish 1st cut, (4) cross-over, (5) finish 2nd cut, and (6) connect
the two cuts. Figure 5b shows the change points obtained from our algorithm. And
Figure 5c shows the milestone clusters learned (numbered by time interval midpoint).
The algorithm found 8 clusters, one of which was pruned out using our 80% threshold
rule.

The remaining 7 clusters correspond well to the manually identified transition
points. It is worth noting that there is one extra cluster (marked 2′), that does not cor-
respond to a transition in the manual segmentation. At 2′, the operator finishes a notch
and begins to cut. While at a logical level notching and cutting are both penetration
actions, they correspond to two different linear transition regimes due to the position-
ing of the end-effector. Thus, the milestone framework separates them into different
clusters even though a human annotator may not do so.
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Fig. 5: (a) A manual semantic segmentation of circle cutting task. (b) The change points for the
circle cutting task are marked in black. (c) The milestones, which are clusters of the change points,
are illustrated with their 75% confidence ellipsoid.

(a) Needle Passing: “Manual”

−0.05 0 0.05 0.1 0.15
0

0.02

0.04

0.06

0.08
(b) Change Points

X (m)

Y
 (

m
)

−0.05 0 0.05 0.1 0.15
0

0.02

0.04

0.06

0.08

X (m)

Y
 (

m
)

(c) Milestones “Left”

−0.05 0 0.05 0.1 0.15
0

0.02

0.04

0.06

0.08

X (m)

Y
 (

m
)

(d) Milestones “Right”

1

2

3

4

5

6

7

8

Fig. 6: (a) A manual semantic segmentation of needle passing task. In orange, we mark the left arm
motions and in blue we mark the right arm motions (b) The change points for the task are marked
in orange (left arm) and blue (right arm). (c-d) The milestones, which are clusters of the change
points, are illustrated with their 75% confidence ellipsoid for both arms

Needle Passing: Next, we apply our methodology to the needle passing task. In Fig-
ure 6a, we illustrate a manual segmentation of the needle passing task. This task re-
quires multilateral manipulation so we find milestones for both arms. We color code
interactions of the right arm in blue and left arm in orange. In Figure 6b, we plot the
change points in (x,y,z) end-effector space for both arms. We find that these change
points correspond well to the logical segments of the task (Figure 6a). These demon-
strations are noisier than the circle cutting demonstrations and there are more outliers.
The subsequent clustering finds 9 milestones (2 pruned). Next, Figures 6c-d illustrate
the milestone clusters. We find that again the milestones learn a small parametrization
for the task structure with the milestones corresponding well to the manual segments.
However, in this case, the noise does lead to a spurious milestone. One possible expla-
nation is that the two middle loops are in close proximity and demonstrations contain
many adjustments to avoid colliding with the loop and the other arm while passing
the needle through leading to numerous change points in that location. Since we inde-
pendently cluster for milestones on each arm, we are unable to learn that structure. A
detailed study of this issue along with a multilateral milestone model is an interesting
avenue of future work.
Suturing: In Figure 7, we show the change points and milestones for the suturing
task. As before, we mark the left arm in orange and the right arm in blue. This task was
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Fig. 7: (a) A manual semantic segmentation of suturing task. In orange, we mark the left arm
motions and in blue we mark the right arm motions (b) The change points for the task are marked
in orange (left arm) and blue (right arm). (c-d) The milestones, which are clusters of the change
points, are illustrated with their 75% confidence ellipsoid for both arms

far more challenging than the previous tasks as the demonstrations were inconsistent.
These inconsistency was in the way the suture is pulled after insertion (some pull
to the left, some to the right, etc.), leading to change points all over the state space.
Furthermore, there were numerous demonstrations with retry-until-success behaviors
for the left arm. Our pruning and compaction techniques are able to mitigate some of
this problems. In fact, the DP-GMM method gives us 23 clusters, 11 of which represent
less than 80% of the demonstrations and thus are pruned (we illustrate the effect of the
pruning in the next section). In the early stages of the task, the milestones clearly
correspond to the manually segmented transitions. As the task progresses, we see that
some of the later milestones do not. This is likely due to an error accumulation, where
actions that were slightly different at the start became increasingly varied at the end.

6.4 Experiment 3. Comparison to “Surgemes”
In the previous experiments, we showed that our milestones qualitatively matched
manually annotated segments. Our manual annotations highlighted only the most im-
portant steps in the task. Milestones give us a semantic task representation consistently
recurring in data, which is in contrast to surgemes which segment at trajectory level.
We evaluate how these primitives compare to the segmentation that we learn with mile-
stones. While this is an apples-to-oranges comparison, it gives us some insights on how
the two frameworks differ. The JIGSAWS dataset has annotations for every demonstra-
tion including the active surgeme type; the time at which the surgeme begins, and ends.
It uses a dictionary of 15 surgemes.

In Table 1, we compare the number of milestone segments for needle passing
and suturing to the number of annotated surgeme segments. We average the num-
ber of surgemes segments per demonstration and also show one standard deviation.
We find that for both tasks there are less segments using milestones than there are us-
ing surgemes. A key difference between our segmentation and number of annotated
surgemes is our compaction step. To account for this, we also apply a compaction
step to the surgeme segments. While there can be other retrials, we manually identify
two surgemes, needle repositioning and needle orientation, that frequently correspond
to retrial steps in [5]. In case of consecutive appearances of these surgemes, we only
keep the 1 instance of each for compaction.
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Table 1: Since one-to-one comparison of learned milestones with annotated data is not meaningful,
we compare our method with annotated data in terms of coverage, i.e. milestones which have
exactly one annotated transition (after compaction) within its time interval.

Mean no. of Surgeme Mean no. of Surgeme Segments No. of Milestones Covered
Segments in Annotated Data in Data (after Compaction) (Our Method) Milestones

Needle Passing 19.3±3.2 14.4±2.57 11 74%
Suturing 20.3±3.5 15.9±3.11 13 66%

The natural next question to explore is whether the milestones that we found are
similar to any of the surgeme transitions. For each demonstration, we count the number
of milestones that are covered, that is, there is only one surgeme (after compaction) that
falls within the milestone’s time interval. For the Needle Passing task, on average 74%
of the milestones were covered, that means there was exactly 1 surgeme transition that
corresponded to that milestone. However, for the Suturing task, on average, 66% of the
milestones were covered. In terms of coverage, the compaction step is crucial. Without
compaction, the suturing task has a coverage of only 46% due to the frequent retrials.

6.5 Experiment 4. Pruning and Compaction
In Figure 8, we highlight the benefit of pruning and compaction using the Suturing
task as exemplar. First, we show the change points without applying the compaction
step to remove retrial change points (Figure 8a). We find that there are many more
change points at the “insert” step of the task. Compaction removes the segments that
correspond to retrial of the insertions. Next, we show the all of the clusters found by
DP-GMM. The centroids of these clusters are marked in Figure 8b. Many of these
clusters are small containing only a few change points. This is why we created the
heuristic to prune clusters that do not have change points from at least 80% of the
demonstrations. In all, 11 clusters are pruned by this rule.

Fig. 8: We highlight the bene-
fits of pruning and compaction.
We first show the change points
without compaction (in black and
green), and then show the mile-
stones without pruning (in red).
Compaction sparsifies the change
points and pruning significantly
reduces the number of clusters.
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7 Conclusion and Future Work
To summarize, we have presented an unsupervised semantic segmentation of surgi-
cal tasks using a novel framework that we call “milestones”. Milestones are ellip-
soidal regions of the state-space (constructed via poses and features) where demon-
strations switch between different locally linear transition regimes. Milestones give
a task-level segmentation, as opposed to segmenting individual trajectories, that di-
vides a task into smaller logical phases. To find milestones, we proposed a hierarchical
model that used Bayesian Non-Parametric clustering that leverages implicit informa-
tion from both kinematic data as well as environment features such as visual cues. Our
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results qualitatively matched hand-annotations of these tasks, and suggests significant
improvements over alternative supervised techniques for segmentation.

Our limited featurization of only penetration and grasping events was sufficient to
capture many of the important interactions. While, the focus of this study was evalu-
ation of the hierarchical framework for milestone learning, The authors will explore
autonomous visual feature generation. We believe that a richer and a more general
featurization can help address some of the problems seen in our framework. For ex-
ample, if use of needle pose in z(t) may improve segmentation in suturing tasks. The
key question is leveraging local structure in this complex new high-dimensional fea-
ture space. We believe that using a Radial Basis Function (RBF) kernel on the tuple
(x(t),x(t + 1)) might allow us to detect transitions in a kernelized space giving us
additional robustness to non-linearities.
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