
Sigma Hulls for Gaussian Belief Space Planning for
Imprecise Articulated Robots amid Obstacles

Alex Lee Yan Duan Sachin Patil John Schulman Zoe McCarthy
Jur van den Berg Ken Goldberg Pieter Abbeel

Abstract— In many home and service applications, an emerg-
ing class of articulated robots such as the Raven and Baxter
trade off precision in actuation and sensing to reduce costs
and to reduce the potential for injury to humans in their
workspaces. For planning and control of such robots, planning
in belief space, i.e., modeling such problems as POMDPs, has
shown great promise but existing belief space planning methods
have primarily been applied to cases where robots can be
approximated as points or spheres. In this paper, we extend
the belief space framework to treat articulated robots where the
linkage can be decomposed into convex components. To allow
planning and collision avoidance in Gaussian belief spaces, we
introduce the concept of sigma hulls: convex hulls of robot
links transformed according to the sigma standard deviation
boundary points generated by the Unscented Kalman filter
(UKF). We characterize the signed distances between sigma
hulls and obstacles in the workspace to formulate efficient
collision avoidance constraints compatible with the Gilbert-
Johnson-Keerthi (GKJ) and Expanding Polytope Algorithms
(EPA) within an optimization-based planning framework. We
report results in simulation for planning motions for a 4-DOF
planar robot and a 7-DOF articulated robot with imprecise
actuation and inaccurate sensors. These experiments suggest
that the sigma hull framework can significantly reduce the
probability of collision and is computationally efficient enough
to permit iterative re-planning for model predictive control.

I. INTRODUCTION

Our work is motivated by the desire to facilitate robust
operation of cost-effective robots such as the Raven surgical
robot [23], Baxter manufacturing robot [22], and low-cost
manipulators [21]. These robots use inexpensive actuation
methods such as cable-driven mechanisms and serial elastic
actuators that are less precise than stiff geared actuators.
They also rely on inexpensive, inaccurate encoders and other
sensors such as accelerometers to sense the robot state. For
such robots to robustly complete navigation and manipulation
tasks under motion and sensing uncertainty, it is important
for the robot to explicitly perform information gathering
actions to minimize the effects of uncertainty.

Alex Lee, Yan Duan, Sachin Patil, John Schulman, Zoe McCarthy,
Ken Goldberg, and Pieter Abbeel are with the Department of
Electrical Engineering and Computer Sciences, University of California
at Berkeley, CA, USA. {alexlee gk, dementrock,
sachinpatil, joschu, zmccarthy, goldberg,
pabbeel}@berkeley.edu

Jur van den Berg is with the School of Computing, University of Utah,
Salt Lake City, UT, USA. berg@cs.utah.edu

This research was supported in part by the National Science Foundation
(NSF) under award # IIS-1227536, by Air Force Office of Scientific
Research (AFOSR) under Young Investigator Program (YIP) award #
FA9550-12-1-0345, by a Sloan Fellowship, and by the Intel Science and
Technology Center on Embedded Computing.

Robot links

Obstacle

Sigma hulls

(a) Obstacle outside sigma hulls

Obstacle

(b) Obstacle overlaps sigma hulls

Fig. 1. Sigma hulls of the individual links of a 3-DOF robot (red, green,
and blue) and an obstacle in the workspace (gray). The sigma hulls are
visualized here only for the sake of illustration and they are never explicitly
constructed in our approach. We use sigma hulls to formulate collision
avoidance constraints in terms of the signed distance to obstacles. (a) A
positive signed distance between a sigma hull and obstacle indicates the
the obstacle is outside the sigma hull and corresponds to the length of the
smallest translation that puts the two shapes into contact [12]. (b) A negative
signed distance indicates that the obstacle overlaps with a sigma hull and
corresponds to the minimum translation length that separates the two shapes,
given by the penetration depth [1].

The problem of maximizing information gain under uncer-
tainty is often formalized as a Partially Observable Markov
Decision Process (POMDP) [15] and is defined over the
space of probability distributions of the state space, also
known as the belief space. Since finding globally optimal so-
lutions to the POMDP problem is computationally intractable
[6], prior work has focused on solving the POMDP problem
for Gaussian belief spaces using sampling-based motion
planners [20], [5] or computing locally-optimal solutions
using optimization-based methods [11], [19], [29], [27].

Collision detection is an integral component of motion
planning. Motion planning algorithms perform collision de-
tection in the workspace since computing configuration space
obstacles is not practical [8]. However, for planning in
belief spaces, collision detection needs to be performed in a
probabilistic sense by considering collisions with respect to
all possible states that the robot could be in. Prior Gaussian
belief space planning methods only consider point robots or
spherical approximations of the robot geometry, for which
probabilistic collision detection can be performed efficiently
in the workspace [5], [29], [27]. In the case of articulated
robots that are not well approximated as spheres, one would
have to apply these methods directly in the configuration
space. An alternative approach would be to use Monte
Carlo sampling [17], which would be very computationally
expensive for belief space planning.



There are two main contributions of our work. First, we
introduce the notion of sigma hulls for collision avoidance
in Gaussian belief spaces. We consider sigma points on the
boundary of the standard deviation contour of the Gaussian
distribution as computed by the Unscented Kalman filter
(UKF). Sigma hulls are convex hulls of the geometry of
individual robot links transformed according to the sigma
points in joint space. Second, we use the signed distances be-
tween the sigma hulls and workspace obstacles to formulate
collision avoidance constraints within an optimization-based
framework based on sequential convex optimization [4]. We
rely on advances in collision detection [1], [12] to formulate
these constraints without explicitly computing the sigma
hulls. We show that the collision avoidance constraints can
be locally approximated by convex constraints, and we derive
how to compute this convex approximation analytically.

We adopt the approach of Platt et al. [19] to use trajectory
optimization [3] for computing a locally optimal trajectory
in belief space. The optimization formulation incorporates
constraints on the state and control inputs and is well-suited
for highly under-actuated belief space planning problems. We
build on recent advances in handling collisions in state space
trajectory optimization [25] to plan motions for articulated
robots in Gaussian belief spaces. As is standard in nonlinear
optimization for control, we follow the model predictive
control (MPC) paradigm [7] of re-planning after every time
step. This has been demonstrated to be a very effective way
of performing feedback control to remain robust to large
perturbations, provided one can re-plan sufficiently fast.

We present results in simulation for planning motions for a
4-DOF planar articulated robot and a 7-DOF articulated robot
with imprecise actuation and sensing. Our experiments indi-
cate that our approach significantly reduces the probability of
collision and the error of arrival at the desired target during
execution. These initial results are encouraging and we posit
that advances in optimization techniques and computational
hardware will eventually make our approach computationally
efficient to enable robots to plan at a high frequency in belief
spaces. This would be an important step towards enabling
low-cost robots to safely and robustly complete navigation
and manipulation tasks in unstructured environments while
operating under considerable uncertainty.

II. RELATED WORK

Recently, research efforts have focused on the planning
problem under uncertainty, which in generality is formalized
as a POMDP, computing solutions for which is compu-
tationally intractable [6]. For problems involving discrete
state, action, and/or observation spaces, algorithms have
been developed that use approximate value iteration [9],
[16]. However, for problems more naturally defined over
continuous state, action, and observation spaces such as those
arising in robot manipulation and navigation, discretizing the
problem and using the aforementioned approaches leads to an
exponential growth in the number of states, subjecting these
problems to the curse of dimensionality [24]. The methods
of [26], [13] handle continuous state and action spaces,

but maintain a global (discrete) representation of the value
function over the belief space, which limits their applicability
to small to medium sized domains.

For problems in which it is reasonable to model beliefs
as Gaussian distributions, sampling-based motion planning
[20], [5] or optimization-based methods [11], [19], [29], [28]
can be used for belief space planning. This concept can
be extended to non-Gaussian beliefs [18] by using particle
filters. These methods handle continuous spaces but only
consider robots with point-like or spherical geometries to
simplify probabilistic collision detection.

We adopt the approach of Platt et al. [19] to use trajectory
optimization [3], [25] in belief space assuming deterministic
belief dynamics. We generalize this approach to plan motions
for articulated robots that are not well approximated as points
or spheres. The uncertainty during execution is mitigated by
re-planning after each time step [7]. In doing so, we propose
a novel formulation of collision avoidance constraints in
belief space using sigma hulls.

III. PRELIMINARIES AND OBJECTIVE

We consider an articulated robot with K links. We are
given a description of the robot geometry and a geometric
description of the obstacles O in the workspace. Let x denote
the robot state, which includes the degrees of freedom (DOF)
of the robot such as joint angles and position of the base. We
refer to the position of a given point on the robot geometry
in a world coordinate frame as a function of x as p(x) and
the pose (both position and orientation) as ψ(x), which is
evaluated in closed form using the robot kinematics model.
We assume that the state space trajectory is discretized into
time intervals of equal duration T = {0, 1, . . . , T}.

At each time step t ∈ T , the stochastic kinematics of the
robot state xt evolves according to the given model:

xt+1 = f(xt,ut,qt), qt ∼ N (0, Idim[q]), (1)

where ut ∈ FU is a control input drawn from the set of
feasible control inputs FU and qt is the motion noise. Al-
though the state is not observed directly, noisy observations
zt are obtained using sensors and are related to the state xt
according to the given stochastic model:

zt = h(xt, rt), rt ∼ N (0, Idim[r]), (2)

where rt is the sensing noise. Without loss of generality,
both qt and rt are drawn from independent Gaussian distri-
butions with zero mean and unit variance and can be scaled
appropriately to be state and control input dependent within
the functions f and h, respectively.

Given Gaussian models of motion and sensing uncertainty
considered above, the probability distribution over the state
or belief is parameterized as a Gaussian distribution. Specif-
ically, the belief state bt =

[ x̂t

vec[
√

Σt]

]
is a vector comprised

of the mean state x̂t and the columns of the square root
√

Σt
of the covariance Σt of a Gaussian distribution N(x̂t,Σt).

We assume that the initial belief b0 =
[ x̂0

vec[
√

Σ0]

]
is

given. Given a current belief bt, a control input ut, and



a measurement zt+1, the evolution of the belief state can
be described using a Kalman filter [19], [28]. Prior work
on Gaussian belief space planning has used the extended
Kalman filter (EKF) [30] but we use an unscented Kalman
filter (UKF) [14], which propagates the mean and covariance
more accurately for highly nonlinear dynamics and observa-
tion models as compared to the EKF.

The UKF uses the unscented transform to compute a
set of samples or sigma points that characterize the λ-
standard deviation contours of the Gaussian distribution [14]
for a given value of the parameter λ. Given a Gaussian
distribution N (x̂,Σ), X = SigmaPoints(x̂,

√
Σ, λ) is a

set of (2 dim[x̂] + 1) sigma points given according to:

X = [x̂ . . . x̂] + λ[0
√

Σ −
√

Σ], (3)

where [x̂ . . . x̂] denote the repeated copies of the mean x̂
concatenated as columns in a matrix. Since the UKF requires
computing the square root of the covariance, we directly use
the square root of the covariance included in the belief state.
We also exploit the symmetry of

√
Σt in our implementation

to eliminate the redundancy.
We refer the reader to [14] for the details of the UKF, but

at a high level the propagation is as follows, given x̂t and
Σt that characterize the current belief:

Xt = SigmaPoints(x̂t,
√

Σt, λ), (4)
Qt = SigmaPoints(0, Idim[q], λ), (5)

X−t+1 = F(Xt,ut,0) ∪ F(x̂t,ut,Qt), (6)
Rt+1 = SigmaPoints(0, Idim[r], λ), (7)

Zt+1 = H(X−t+1,0) ∪H(E[X−t+1],Rt+1), (8)

where E[·] refers to the sample mean of a set of samples,
and F(·) and H(·) refer to the sets of results of the function
f and h applied to each element of the operand, respectively.
The new belief is then computed according to:

x̂t+1 = E[X−t+1] +Kt(zt+1 − E[Zt+1]), (9)√
Σt+1 =

√
Var[X−t+1]−Kt Var[Zt+1]KT

t , (10)

where Kt = Cov[X−t+1,Zt+1] Var[Zt+1]−1, and Var[·] and
Cov[·, ·] refer to the sample variance and sample covariance
respectively of the respective sets of samples. The mean is
computed using s = |X−t+1| = 2(dim[x]+dim[q])+1 points.

The stochastic belief space dynamics is then given by:

bt+1 = g(bt,ut) +W (bt,ut)wt, wt ∼ N (0, I), (11)

g(bt,ut) =

[
E[X−t+1]

vec[
√

Var[X−t+1]−Kt Var[Zt+1]KT
t

]
, (12)

W (bt,ut) =

[√
Kt Var[Zt+1]KT

t

0

]
. (13)

Inspired by Platt et al. [19], we make the assumption that
the maximum likelihood observation is obtained at each time
step, i.e., zt+1 = E[Zt+1], which eliminates the stochasticity
from the belief dynamics. This assumption of determinism is
just used for efficiently planning locally optimal trajectories

in belief space. It is important to note that we consider the
stochastic belief dynamics during execution of the computed
trajectory. We refer to the nominal state obtained under the
maximum likelihood observation assumption as b̂ and the
nominal control input as û. The deterministic dynamics of
the nominal belief b̂t evolves as:

b̂t+1 = g(b̂t, ût), (14)

where the function g is as defined in Eq. (12). During
execution, we compute the actual belief state bt+1 using the
observation zt+1 and re-plan a locally optimal nominal belief
space trajectory starting from bt+1, essentially invoking
model predictive feedback control (MPC) [7] in belief space.

Objective: To facilitate safe execution of motion plans in
Gaussian belief space, our objective is to compute optimal
trajectories in belief space that are at least λ-standard devi-
ations safe, where λ is a user-specified parameter. When a
λ-standard deviations safe optimal trajectory does not exist,
we report that a solution cannot be found.

IV. TRAJECTORY OPTIMIZATION IN BELIEF SPACE

We formulate belief space planning as a constrained non-
linear optimization problem which minimizes a user-defined
cost function encoding the task objective while satisfying all
task constraints. For notational convenience, we concatenate
the belief states and control inputs for all time steps t ∈ T
to form B̂ = [b̂0 . . . b̂T ]T and Û = [û0 . . . ûT−1]T that
parameterize a nominal belief space trajectory such that
b̂t+1 = g(b̂t, ût) ∀ t ∈ {0, . . . , T − 1}. The optimization
problem is then formally stated as:

min
B̂,Û

C(B̂, Û)

s. t.∀t∈T b̂t+1 = g(b̂t, ût),

Φ(B̂, Û , λ) ≥ 0,

ψ(x̂T ) = ψtarget,

ût ∈ FU ,

(15)

where C(B̂, Û) is a cost function encoding the task objective,
ψ(x̂T ) = ψtarget constrains the robot end effector pose
ψ(x̂T ) at the final time step T to be the desired end
effector pose ψtarget, and ût ∈ FU constrains the control
input ût to lie in the set of feasible control inputs FU .
Φ(B̂, Û , λ) ≥ 0 enforces that the trajectory is λ-standard
deviations safe for probabilistic collision avoidance in belief
space. The optimization is initialized with a belief trajectory
B̄ = [b̄0 . . . b̄T ]T and Ū = [ū0 . . . ūT−1]T .

The general form of the optimization problem given in Eq.
(15) is challenging because of the highly nonlinear objective
and constraints. It is thus difficult to find globally optimal so-
lutions to this problem. We compute locally optimal solutions
using sequential convex programming [3], by repeatedly
constructing a locally convex approximation to the original
problem around the initialization trajectory (B̄, Ū). We refer
the reader to Betts [3] for a detailed exposition of trajectory
optimization and Schulman et al. [25] for application of these
methods to robot motion planning in state space.



Costs and Constraints: We describe the costs and con-
straints in detail below:

1) C(B̂, Û): We consider the planning objective of accom-
plishing the desired task while minimizing uncertainty and
control effort. The cost function we use is of the form:

C(B̂, Û) =
∑T
t=0 tr[MtΣ̂t] +

∑T−1
t=0 ûTt Ntût, (16)

where Mt and Nt are positive definite cost matrices ∀ t ∈ T
that weigh the contributions of the two cost terms. The
term tr[MtΣ̂t] penalizes the uncertainty by considering the
departure from zero variance and the term ûTt Ntût is a
quadratic cost encoding the total control effort.

2) b̂t+1 = g(b̂t, ût) ∀ t ∈ {0, . . . , T − 1}: This enforces
the constraint on the nominal belief dynamics given by Eq.
(14). The locally convex approximation of the nonlinear
equality constraint is obtained by linearizing around the
initialization trajectory (B̄, Ū) as:

g(b̂t, ût) ≈ g(b̄t, ūt) +Gt(b̂t − b̄t) +Ht(ût − ūt) (17)

Gt =
∂g

∂b̂
(b̄t, ūt), Ht =

∂g

∂û
(b̄t, ūt), (18)

where Gt and Ht are the Jacobians of the nominal belief
dynamics function evaluated (numerically) at b̄t, ūt.

We also add inequality constraints on the belief states b̂t
and control inputs ût of the form ‖b̂t − b̄t‖2 < εB and
‖ût − ūt‖2 < εU to ensure that the optimization progresses
only within bounds of the region where the locally convex
approximation holds, also known as the trust region in
optimization literature. The size of the trust region is adjusted
within an inner loop based on a line search procedure [25].

3) ût ∈ FU ∀ t ∈ {0, . . . , T − 1}: This constrains the
control input to lie within the set of feasible control inputs
FU . For instance, control input limits might correspond to
the maximum speed with which the base or links might
move. We formulate the feasibility constraint as box in-
equality constraints umin ≤ ût ≤ umax at each time step
t corresponding to the minimum umin and maximum umax
control input bounds, respectively. The inequality constraints
are treated as (hard) constraints in the optimization [25].

V. SIGMA HULLS FOR COLLISION AVOIDANCE

For formulating collision avoidance constraints
Φ(B̂, Û , λ) ≥ 0 for Gaussian belief spaces, we introduce
the notion of sigma hulls, which are defined as follows:

Definition: A sigma hull for a robot link is defined as
the convex hull of the geometry of the link transformed in
joint space according to the UKF sigma points lying on the
λ-standard deviation contour of the covariance (Eq. (6)).

Fig. 1 shows the 1-standard deviation sigma hulls of each
of the robot links for an articulated robot. It is important that
we consider the sigma hulls of the individual robot links and
not the robot geometry in its entirety.

We use the signed distance between the sigma hull and
objects in the workspace O, as shown in Fig. 1. Informally,
the signed distance corresponds to the minimum translation
distance required to either put two geometric shapes in

pAjpAj

O

pO

O

(a) sd(A, O) > 0 (b) sd(A, O) < 0

n̂

pAkpAi pAi pAk

pA

A
n̂

pA
pO

A

Fig. 2. Signed distance between a 3D obstacle (gray) O in the workspace
and a 3D convex hull A obtained by transforming the robot link geometry
using the UKF sigma points. pA and pO are the points of closest approach
or penetration. Note that the convex hull of the geometry corresponding to
the sigma points is never explicitly constructed. Instead, we rely on the
concept of support mapping to formulate collision avoidance constraints.

contact or separate them if they are overlapping. The dis-
tance between two shapes can be calculated by the Gilbert-
Johnson-Keerthi (GJK) algorithm [12] and the penetration
depth is calculated by the Expanding Polytope Algorithm
(EPA) [1]. One useful feature of these two algorithms is
that they represent any given convex shape A by its support
mapping, i.e., a function that maps a vector v to a point p
on A that is furthest in direction v:

supportA(v) = arg max
p∈A

v · p. (19)

We consider the sigma hull of each individual link in the
robot by transforming the geometry of each link according
to the sigma points. 1 For a K link articulated robot and
|O| objects in the workspace, we formulate the collision
avoidance constraints for each of the |O|K link-object pairs
at each time step. We ignore self-collisions between robot
links or collisions between pairs of objects in the workspace
and assume that the objects O in the workspace are pre-
cisely known. We also assume that all the objects O are
convex. In case of non-convex obstacles, we use standard
convex decomposition techniques to decompose non-convex
geometries into convex geometries.

For a given link A, let A = convhull{A0, . . . , As} be
the sigma hull obtained by transforming the link geometry
according to the s UKF sigma points (Eq. (3)), as illustrated
in Fig. 2. It turns out that we do not have to explicitly
compute a geometrical representation of the convex hull
A to perform the signed distance computation, since the
signed distance can be calculated using the support mapping
function (Eq. (19)) as:

supportA(v) = supportAi(v), (20)
i = arg max

i∈{0,...,s}
supportAi(v) · v. (21)

We use the above definition to compute the signed distance
of A with respect to objects O in the workspace by defining

1For an articulated robot, we obtain the transformed geometries of all the
links in a single pass by starting from the last link that contains the end
effector. Since the UKF sigma points corresponding to the last link contain
all the DOF of the kinematic chain, we perform all the necessary forward
kinematics evaluations only once and cache the sigma shapes for all the
remaining links as the computation is being performed for the last link.



the support mapping function for the transformed link ge-
ometries {A0, . . . , As}. We use efficient implementations of
the GJK and EPA algorithms available in the Bullet collision
checking library [10] for this purpose.

Fig. 2 shows the signed distance between an object O ∈ O
and the convex hull A. Two objects are out of collision if
the signed distance sd(A, O) is positive. We enforce the
following collision avoidance constraint at each time step:

sd(A, O) ≥ dsafe ∀ O ∈ O, (22)

where a user-specified safety margin dsafe > 0 is used to urge
the robot trajectory to stay at least dsafe distance from other
objects to avoid being in contact (corresponding to dsafe = 0).

For the purposes of optimization, the nonlinear constraint
in Eq. (22) is approximated by linearized inequality con-
straints obtained by linearizing around the initialization tra-
jectory (B̄, Ū). The signed distance sd(A, O) is a function
of the belief state b̂t and is denoted as sdAO(b̂t). We denote
the closest points on A and O that realize the signed distance
as pA(b̂t) and pO, respectively, and the contact normal as
the unit vector n̂(b̂t). We approximate the signed distance
between A and O at a belief state b̂t in the neighborhood
of the current belief b̄t as:

sdAO(b̂t) ≈ n̂(b̄t) · (pO − pA(b̂t)), (23)

n̂(b̄t) =
(pO − pA(b̄t))

‖pO − pA(b̄t)‖2
, (24)

where we assume that the contact normal does not change
in the local neighborhood of b̄t. We now linearize the
expression for signed distance sdAO(b̂t) given by Eq. 23
at the current belief b̄t as:

sdAO(b̂t) ≈ sdAO(b̄t) + St(b̂t − b̄t), (25)

St =
∂sdAO

∂b̂
(b̄t) ≈ −n̂(b̄t)

T ∂pA

∂b̂
(b̄t). (26)

The closest point pA(b̂t) lies at a vertex, edge, or face
of the convex hull A, the vertices of which come from the
transformed link geometries {A0, . . . , As}. Since collision
checking is expensive even while planning in the state space
[25], we compute the derivative St analytically instead of
relying on expensive numerical derivatives as follows:

We consider the most general case where the closest point
pA(b̂t) lies on a face of the convex hull (as shown in Fig. 2).
With small notational modifications, our analysis holds for
general simplices but we consider faces to be triangles since
triangles meshes are the most popular representations of ge-
ometry in collision libraries [10]. Without loss of generality,
we assume that face is spanned by three vertices pAi , pAj ,
and pAk and that the three vertices come from three distinct
instances of geometry Ai, Aj , and Ak corresponding to the
i, j, and kth UKF sigma points, respectively. This information
is made available to us from the collision library when
the signed distance computation is performed. We represent
pA(b̂t) as a barycentric combination of the vertices as:

pA(b̂t) =
∑

l∈{i,j,k}

αlpAl ,
∑

l∈{i,j,k}

αl = 1, (27)

Robot links

Obstacle

Continuous-time

(a) Obstacle does not collide with (b) Obstacle overlaps with
discrete-time sigma hulls continuous-time sigma hulls

Sigma hulls at
discrete time steps

sigma hulls

Fig. 3. (a) Sigma hulls of the robot links at discrete time steps are
collision-free but the continuous trajectory between time steps might end
up colliding with an obstacle (gray). (b) By considering the convex hull of
the sigma hulls between consecutive time steps, we are able to find feasible
solutions that avoid obstacles. This reduces the dependence of the feasibility
of the solution on the discretization of the trajectory and reduces the overall
computational cost of the optimization.

where αl, l ∈ {i, j, k} are the barycentric coordinates of the
point pA(b̂t). The derivative term from Eq. (26) can now
be written as:

∂pA

∂b̂
(b̄t) =

∑
l∈{i,j,k}

αl
∂pAl

∂b̂
(b̄t). (28)

Each point pAl is a function of the lth sigma point given
by pAl(X l). Each X l is defined as a linear combination of
x̂t and a corresponding column of

√
Σ̂t as given in Eq.

(3), which constitute the belief state b̂t. The derivatives in
Eq. (28) can now be evaluated analytically in terms of the
position Jacobian matrices Jp

Al
that relate the point pAl to

the current state x̄t.
Using Eqs. (22), (25), (26), and (28), we include the

collision avoidance constraint in the optimization formulation
(Eq. (15)) in terms of the belief state b̂t as:

sdAO(b̄t) + St(b̂t − b̄t)− dsafe ≥ 0, ∀ O ∈ O. (29)

Continuous-time collision avoidance constraint: The
preceding discussion describes how to formulate collision
avoidance constraints at a given time step t. We can use
this constraint to avoid collisions at each time step of a
discretely-sampled trajectory. However, neglecting collisions
between time steps can lead to trajectories that collide with
obstacles in between time steps. Fig. 3(a) shows an example
of sigma hulls at two consecutive time steps. Even though
the individual sigma hulls are collision-free, the continuous
sigma hulls are in collision (Fig. 3(b)).

Instead of relying on a fine-grained discretization of the
trajectory to ensure safety, we modify the collision con-
straints from the preceding discussion (Eq. (22)) to for-
mulate (probabilistic) continuous-time collision avoidance
constraints by considering the convex hull of the individual
sigma hulls between consecutive time steps (Fig. 3). The
continuous-time collision avoidance constraint now becomes:

sd(convhull(At,At+1), O) ≥ dsafe ∀ O ∈ O. (30)



Initial state x0

Final state xT
Obstacles

Target position

xsensing

Intermediate states
x1...T−1

(a) State space trajectory

Initial mean state x̂0

Final mean state x̂T

xsensing

Narrow clearance from obstacles
between consecutive time steps
(sigma hull for last time step)

(b) 1-standard deviation belief space trajectory

Initial mean state x̂0

Final mean state x̂T

xsensing

Wider clearance from obstacles
between consecutive time steps
(sigma hull at last time step)

(c) 4-standard deviation belief space trajectory

Fig. 4. A 4-DOF planar robot (red) reaching into a narrow slit (gray). The robot receives noisy measurements of the end-effector position of the robot,
the noise being linearly proportional to the x-coordinate of the end-effector position and is minimum at x = xsensing. (a) A locally-optimal state space
trajectory [25] produces a trajectory that avoids collisions with obstacles but is unaware of the uncertainty in the robot state. (b) A 1-standard deviation
safe belief space trajectory computed using our approach. Notice how the robot moves to bring the x-coordinate of its end-effector closer to xsensing to
reliably localize itself, before arriving at the target with reduced uncertainty. However, there is narrow clearance from the obstacles between time steps
t = T − 1 and t = T , which results in a higher collision probability during execution (Fig. 5). (c) A 4-standard deviations safe trajectory reaches in by
observing a wider clearance to obstacles between consecutive time steps t = T − 1 and t = T , to reduce the probability of collision during execution.

It is important to note that we never explicitly compute
the convex hull of the sigma hulls At and At+1. Instead,
we extend the concept of support mapping in Eq. (20) to
naturally formulate the continuous-time collision avoidance
constraint, where the support mapping computation considers
points on both At and At+1. Also, we have implicitly
assumed here that the sigma hulls undergo only translations
between time steps. However, the sigma hulls can also
undergo rotations between time steps. This can be accounted
for by considering an upper bound of the swept volume based
on the amount of rotation, as considered in [25].

This extension is able to find feasible solutions in many
cases where the discrete collision avoidance fails and con-
verges to a solution that passes through obstacles between
time steps. It also comes with a modest performance penalty
since we now have to calculate the support mapping for twice
as many vertices, which implies that the narrow phase colli-
sion detection takes twice as long. However, the continuous
collision constraint allows us to consider lesser number of
time steps in the initial discretization of the trajectory, thus
reducing the overall computational cost of the optimization.

VI. RESULTS

We evaluated our approach in simulation for planning
motions for a 4-DOF planar robot and a 7-DOF robot with
imprecise actuation and equipped with inaccurate sensing
mechanisms. For each of the two robots, the state x =
(θ1, . . . , θn) is a n-D vector (n = 4 or 7 depending on the
robot) consisting of the joint angles and the control input u =
(ω1, . . . , ωn) is a n-D vector consisting of the angular speeds
at each of the joints. The motion noise qt ∼ N (0, Idim[q]) is
scaled by a constant matrix Q. This results in the following
stochastic kinematic model:

f(xt,ut,qt) =

[
θ1+τω1

...
θn+τωn

]
+Qqt, (31)

where τ is the duration of the time step.

A. 4-DOF planar robot

We consider a scenario where the robot obtains noisy
measurements about its end-effector position, the noise being
linearly proportional to the x-coordinate of the end-effector
position and the noise is minimum at x = xsensing, as shown
in Fig. 4. This is similar in spirit to the light-dark example
considered by Platt et al. [19] where the robot obtains reliable
sensing information in a certain region of the environment
but the sensor measurements get noisier as the robot moves
away from the region. Let pe(x) = [xe, ye]

T be the 2-D
position of the robot end-effector in the world coordinate
frame. The sensing noise rt is linearly proportional to
|xe − xsensing|. The observation model is given by:

h(xt, rt) = [ xe
ye ] + rt. (32)

Evaluation: A locally-optimal state space trajectory [25]
avoids obstacles (Fig. 4(a)) but is unaware of the uncertainty
in the robot state and accumulates considerable uncertainty
during execution. Belief space planning improves the input
trajectory such that the robot moves to bring the x-coordinate
of its end-effector position closer to xsensing to reliably
localize itself, before arriving at the target with reduced
uncertainty. A lower value of λ = 1 for planning results
in a trajectory that has a narrower margin of clearance from
obstacles (Fig. 4(b)), while a larger value for the λ parameter
yields trajectories that have a wider clearance from obstacles
(Fig. 4(c)), resulting in a safer trajectory.

We evaluated our approach in simulation by executing
the trajectories with artificial motion and sensing noise. We
considered two metrics to quantify the execution outcome: (i)
the number of runs that resulted in collisions with obstacles,
which corresponds to the probability of collision during
execution, and (ii) the distance between the final end-effector
position and the desired target, which corresponds to the task
accuracy after execution.

We considered 100 executions of the locally optimal state
space trajectory (Fig. 4(a)) [25] in two scenarios: (i) with re-
planning in state space starting from the estimated state given



(a) Probability of collision (b) Mean distance from target

Fig. 5. Evaluation of our approach in simulation by considering trajectories
obtained by varying the λ parameter and executing with artificial motion
and sensing noise. Comparison in terms of (a) the number of trajectory
executions that result in a collision with obstacles, and (b) error at final
time step from the desired target. Execution of trajectories with re-planning
(MPC paradigm) results in the lowest mean distance from the target as
compared to open-loop execution or execution with a LQG feedback policy.

by the Kalman filter, and (ii) using a linear feedback policy
(linear quadratic Gaussian controller or LQG in this case
[2]). With re-planning, the probability of collision is 60%
with a mean distance of 0.23 units from the target, while the
LQG controller results in a 63% collision probability with a
mean distance of 0.3 units from the target.

In contrast, belief space planning computes trajectories
that have a significantly lower probability of collision and
a lower error from the desired target at the final time step.
We compared execution of trajectories computed using our
approach in three scenarios: (i) open-loop execution, (ii)
linear feedback policy (LQG), and (iii) re-planning (MPC
paradigm). Fig. 5 shows the collision probability and mean
distance from the target for each of these three scenarios for
100 simulated executions. Execution of trajectories computed
using our approach with re-planning has the lowest mean dis-
tance from the target and low probability of collision during
execution. The probability of collision with re-planning in
belief space is 21% for a 4-standard deviation safe trajectory
and the mean distance is 0.2 units from the target, which is a
considerable improvement over executions of locally-optimal
state space trajectories and over open-loop executions of
belief space trajectories.

Our unoptimized C++ implementation running on a single
3.2 GHz Intel i7 processor core took 0.65 seconds to plan
a locally optimal initial trajectory with 10 time steps for a
14-D belief space, while the total execution time including
re-planning was 2.9 seconds for 10 time steps.

B. 7-DOF arm

We consider a scenario where the robot is equipped with
an inaccurate proximity sensor mounted at the end-effector.
The signal strength measured by the sensor decays quadrati-
cally with the distance to a given object. In this scenario, the
sensor measures the signal strength in terms of the distance
to a wall, which is parallel to the y-z plane and has a known
location x = xwall (Fig. 6(a)). Let pe(x) = [xe, ye, ze]

T be
the position of the robot end-effector in the world coordinate
frame. The robot also measures the angle at the base using
an inaccurate encoder. The sensing noise rt ∼ N (0, Idim[r])
is scaled by a constant matrix R. The stochastic sensing
measurements are then related to the state xt as:

h(xt, rt) =
[

1/((xe−xwall)
2+1)

θ1

]
+Rrt. (33)

Evaluation: A locally-optimal state space trajectory [25]
avoids obstacles (Fig. 6(a)) but is oblivious to the uncertainty
in the robot state and might accumulate considerable uncer-
tainty during execution. Belief space planning improves the
input trajectory to compute a locally optimal trajectory that
is able to safely guide the robot towards the wall for reliable
localization before heading back to the target (Fig. 6(b)).

We considered 100 executions of the computed state space
trajectory in two scenarios. With re-planning in state space,
the probability of collision is 48% with a mean distance of
0.26 units from the target, while execution using a linear
feedback policy (LQG) results in a probability of collision
of 36% and a mean distance of 0.39 units from the target.

Belief space planning computes trajectories that have a
significantly lower probability of collision and a lower error
from the desired target at the final time step (Fig. 6(b)). We
considered 100 executions of the belief space trajectory with
artificial motion and sensing noise. Open-loop execution of
locally-optimal belief space trajectories (Fig. 6(c)) results in
a probability of collision of 59% and a mean distance of
0.34 units from the target, while execution using a linear
feedback policy (LQG) results in a probability of collision
of 72% and a mean distance of 0.51 units from the target. The
performance of the linear feedback policy on the belief space
trajectory is worse since the computed trajectory attempts
to enter a narrow passage between obstacles in order to
reliably localize itself, which results in a higher probability
of collision during execution.

In contrast, execution of the belief space trajectory with
re-planning results in a low probability of collision of 20%
and a mean distance of 0.19 units from the target, which
is lower than executions of state space trajectories or belief
space trajectories with a linear feedback policy.

Our implementation took 1.9 seconds to plan a locally
optimal state space trajectory with 20 time steps while it
took 8.2 seconds to plan a belief space trajectory with 20
time steps for a 35-D belief space. The total execution
time including re-planning in belief space was 46.3 seconds.
Our experiments suggest that re-planning in belief space
can significantly increase the probability of successful task
execution with little computational overhead.

VII. CONCLUSION AND FUTURE WORK

We presented a novel formulation for collision avoidance
for planning in Gaussian belief spaces for articulated robots
that are not well approximated as points or spheres. We
propose the use of sigma hulls, which are convex hulls
of the robot geometry transformed according to the sigma
points generated by the Unscented Kalman filter (UKF). We
use efficient formulations of the support mapping of convex
shapes to formulate collision avoidance constraints in terms
of the signed distance between the sigma hulls and objects in
the workspace within an optimization-based planning frame-
work. Our experiments suggest that re-planning in belief
space can considerably reduce the probability of collision
and error from desired target during execution.



Final mean state x̂T

Wall

Obstacles

Initial mean state x̂0

Target pose ψ(x̂T )

(a) State space trajectory (b) Belief space trajectory

Wall

Collision with obstacles

Initial mean state x̂0

Large target error

(c) Open-loop execution (d) Execution with re-planning

Fig. 6. Simulated trajectory traces for a 7-DOF articulated robot moving in a constrained environment with obstacles (blue). The robot localizes itself
based solely on distance of the robot end-effector from a wall in the environment, with the signal strength decaying quadratically with the distance. We
visualize the uncertainty at the initial state and target in terms of the sigma hulls (rendered translucent). (a) A locally-optimal state space trajectory [25]
produces a trajectory that avoids collisions with obstacles but is unaware of the uncertainty in the robot state. (b) A locally-optimal belief space trajectory.
Notice how the robot moves closer to the wall through a narrow passage to reliably localize itself before moving to the desired target. (c) Open-loop
execution of the belief space trajectory leads to collisions with objects in the workspace because the optimal trajectory is computed assuming deterministic
belief dynamics (Eq. (14)). The end-effector is also farther away from the desired target. (d) We initialize the optimization with the previously computed
solution and the current belief state to re-plan after every time step. A resultant execution of the trajectory that successfully avoids collisions is shown.
The robot moves the end-effector closer to the wall for an extended period of time for reliable localization before safely heading back to the target.

Our work opens up several avenues for future research.
Instead of λ being a user-specified parameter, one potential
extension could be to incorporate λ in the optimization
and search over λ values for an optimal solution that is
both safe and minimizes the cost function encoding the task
objective. Our Gaussian parameterization of the belief state
might not be applicable for some applications, for instance
ones where multi-modal beliefs are expected to appear.
Another extension is to consider self-collisions between the
robot links and collisions with other uncertain objects in
the workspace. Finally, we plan to apply this approach to
plan motions for low-cost robot platforms such as the Raven
surgical robot and the Baxter manufacturing robot.

REFERENCES

[1] G. V. D. Bergen, “Proximity Queries and Penetration Depth Compu-
tation on 3D Game Objects,” in Game Developers Conference (GDC),
2001.

[2] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific, 1995, vol. 1, no. 2.

[3] J. T. Betts, Practical Methods for Optimal Control and Estimation
using Nonlinear Programming. Society for Industrial & Applied
Mathematics, 2010, vol. 19.

[4] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[5] A. Bry and N. Roy, “Rapidly-exploring Random Belief Trees for Mo-
tion Planning Under Uncertainty,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), 2011, pp. 723–730.

[6] J. T. C. Papadimitriou, “The Complexity of Markov Decision Pro-
cesses,” Mathematics of Operations Research, vol. 12, no. 3, pp. 441–
450, 1987.

[7] E. F. Camacho and C. Bordons, Model Predictive Control. London,
UK: Springer Verlag, 2004.

[8] J. Canny, Complexity of Robot Motion Planning. MIT press, 1988.
[9] A. D. Christiansen and K. Goldberg, “Comparing Two Algorithms for

Automatic Planning by Robots in Stochastic Environments,” Robotica,
vol. 13, no. 6, pp. 565–574, 1995.

[10] E. Coumans, “Bullet Collision Detection and Physics Library,” Avail-
able: http://bulletphysics.org, 2013.

[11] T. Erez and W. D. Smart, “A Scalable Method for Solving High-
Dimensional Continuous POMDPs Using Local Approximation,” in
Conf. on Uncertainty in Artificial Intelligence, 2010, pp. 160–167.

[12] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A Fast Procedure
for Computing the Distance between Complex Objects in Three-
Dimensional Space,” IEEE Journal of Robotics and Automation, vol. 4,
no. 2, pp. 193–203, 1988.

[13] K. Hauser, “Randomized Belief-Space Replanning in Partially Observ-
able Continuous Spaces,” Algorithmic Foundations of Robotics IX, pp.
193–209, 2011.

[14] S. J. Julier and J. K. Uhlmann, “New Extension of the Kalman Filter
to Nonlinear Systems,” in AeroSense 1997, 1997, pp. 182–193.

[15] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning
and Acting in Partially Observable Stochastic Domains,” Artificial
Intelligence, vol. 101, no. 1-2, pp. 99–134, 1998.

[16] H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP: Efficient Point-
based POMDP Planning by Approximating Optimally Reachable
Belief Spaces,” in Robotics: Science and Systems (RSS), 2008.

[17] A. Lambert, D. Gruyer, and G. St Pierre, “A Fast Monte Carlo
Algorithm for Collision Probability Estimation,” in Intl. Conf. on
Control, Automation, Robotics and Vision, 2008, pp. 406–411.

[18] R. Platt, L. Kaelbling, T. Lozano-Perez, and R. Tedrake, “Efficient
Planning in Non-Gaussian Belief Spaces and its Application to Robot
Grasping,” in Int. Symp. on Robotics Research (ISRR), 2011.

[19] R. Platt, R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief Space
Planning assuming Maximum Likelihood Observations,” in Robotics:
Science and Systems (RSS), 2010.

[20] S. Prentice and N. Roy, “The Belief Roadmap: Efficient Planning in
Belief Space by Factoring the Covariance,” Int. Journal of Robotics
Research, vol. 28, no. 11–12, pp. 1448–1465, 2009.

[21] M. Quigley, R. Brewer, S. P. Soundararaj, V. Pradeep, Q. Le, and A. Y.
Ng, “Low-cost Accelerometers for Robotic Manipulator Perception,”
in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
2010, pp. 6168–6174.

[22] Rethink Robotics, “Baxter manufacturing robot,” Available:
http://www.rethinkrobotics.com/index.php/products/baxter/, 2012.

[23] J. Rosen, M. Lum, M. Sinanan, and B. Hannaford, “Raven: Developing
a Surgical Robot from a Concept to a Transatlantic Teleoperation
Experiment,” in Surgical Robotics: System Applications and Visions.
Springer, 2011, ch. 8, pp. 159–197.

[24] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards,
Artificial Intelligence: A Modern Approach. Prentice Hall, 1995.

[25] J. Schulman, J. Ho, A. Lee, H. Bradlow, I. Awwal, and P. Abbeel,
“Finding Locally Optimal, Collision-Free Trajectories with Sequential
Convex Optimization,” in Robotics: Science and Systems (RSS), 2013.

[26] S. Thrun, “Monte Carlo POMDPs,” Advances in Neural Information
Processing Systems, vol. 12, pp. 1064–1070, 2000.

[27] J. van den Berg, P. Abbeel, and K. Goldberg, “LQG-MP: Optimized
Path Planning for Robots with Motion Uncertainty and Imperfect State
Information,” Int. Journal of Robotics Research, vol. 30, no. 7, pp.
895–913, 2011.

[28] J. van den Berg, S. Patil, and R. Alterovitz, “Motion Planning under
Uncertainty using Iterative Local Optimization in Belief Space,” Int.
Journal of Robotics Research, vol. 31, no. 11, pp. 1263–1278, 2012.

[29] M. P. Vitus and C. J. Tomlin, “Closed-Loop Belief Space Planning
for Linear, Gaussian Systems,” in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), 2011, pp. 2152–2159.

[30] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” Univ.
North Carolina at Chapel Hill, Tech. Rep. TR 95-041, 2006.


