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Abstract— Bevel-tip steerable needles for minimally invasive
medical procedures can be used to reach clinical targets that
are behind sensitive or impenetrable areas and are inaccessible
to straight, rigid needles. We present a fast algorithm that can
compute motion plans for steerable needles to reach targets in
complex, 3D environments with obstacles at interactive rates.
The fast computation makes this method suitable for online con-
trol of the steerable needle based on 3D imaging feedback and
allows physicians to interactively edit the planning environment
in real-time by adding obstacle definitions as they are discovered
or become relevant. We achieve this fast performance by using
a Rapidly Exploring Random Tree (RRT) combined with a
reachability-guided sampling heuristic to alleviate the sensitivity
of the RRT planner to the choice of the distance metric. We also
relax the constraint of constant-curvature needle trajectories
by relying on duty-cycling to realize bounded-curvature needle
trajectories. These characteristics enable us to achieve orders
of magnitude speed-up compared to previous approaches; we
compute steerable needle motion plans in under 1 second
for challenging environments containing complex, polyhedral
obstacles and narrow passages.

I. INTRODUCTION

Needle insertion is widely-used in minimally invasive
medical procedures for diagnosis and treatment, including
biopsy sample removal, delivery of drug injections, and ra-
dioactive seed implantation for cancer treatment. Performing
these procedures using traditional rigid needles is limited to
straight-line paths between the needle entry point and target
zone, which can lead to complications due to the inability
to maneuver around impenetrable or sensitive anatomical
structures. As an alternative to rigid needles, a new class
of highly flexible, bevel-tip needles are being developed that
enable the needle to move along curved trajectories within
tissue when a forward pushing force is applied [19], [2].
This class of steerable needles offers improved mobility,
enabling needles to reach previously inaccessible targets
while maneuvering around sensitive or impenetrable areas.

Planning and executing needle insertion procedures for
bevel-tip steerable needles is a difficult problem due to fac-
tors such as the nonholonomic motion of the needle tip, the
presence of anatomical obstacles, and uncertainty in needle
motion and state feedback. For a human operator, navigating
a steerable needle under image guidance by manipulating
the needle at its base is challenging and would require
extensive training and experience. These problems can be
alleviated with the assistance of motion planning software
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Fig. 1. Our interactive-rate motion planner steers a flexible, bevel-tip needle
around anatomical obstacles in a scenario modeling the human prostate
anatomy (based on Xu et al. [22]). The region of interest (in and around the
prostate) is indicated by the blue bounding box. For two different targets,
we illustrate the RRT constructed during the planning phase (black) and a
feasible trajectory for the needle (highlighted in red).

for computing feasible needle motions that avoid anatomical
obstacles and reach clinical targets.

We present a fast, sampling-based motion planning al-
gorithm capable of computing motion plans at interactive
rates for steerable needles in complex, 3D environments with
obstacles. This method could potentially be used for online
control of the steerable needle based on 3D imaging feedback
(obtained from imaging modalities like 3D ultrasound and
MRI). It could also allow physicians to interactively edit the
planning environment (e.g. relocate the target or add obstacle
definitions) and immediately generate new motion plans on
the fly as new information is discovered or becomes relevant.

Our approach is based on Rapidly-exploring Random
Trees (RRTs) [11] with key extensions and customizations
to enable fast motion planning for steerable needles. We use
a reachability-guided sampling heuristic that alleviates the
sensitivity of the RRT planner to the choice of the distance
metric and yields significant improvement in performance of
the planner [18]. In contrast to many prior motion planners
for steerable needles, we relax the restrictive constraint of
constant-curvature needle trajectories by using duty cycling
as introduced by Minhas at al. [12], [9] to realize bounded-
curvature trajectories.

We illustrate feasible plans computed by our planner in
Fig. 1. We also consider a clinically motivated planning
objective to evaluate the quality of a path in terms of
the needle insertion length (shortest paths) and maximum
clearance from the obstacles in the workspace. Prior methods
addressing this problem require multiple seconds or minutes



to compute a single motion plan [7], [21], [22]; the approach
introduced in this paper enables us to achieve orders of mag-
nitude speed-up in computing steerable needle plans through
challenging 3D environments with polyhedral obstacles and
narrow passages.

II. RELATED WORK

Webster et al. [19] developed and experimentally validated
a nonholonomic model of bevel-tip, flexible needle motion
in stiff tissues and fit model parameters using experiments
with tissue phantoms. Other steerable needle designs have
also been proposed, including steering symmetric-tip needles
by deforming tissues [6], stylet tips [14], and pre-bent tubes
[17], [20]. Our emphasis is on bevel-tip, flexible needles,
which we refer to simply as steerable needles in this paper.

Motion planning for steerable needles has been extensively
studied for 2D environments. Alterovitz et al. modeled the
needle motion in 2D as a Dubins car without reverse and
used a nonlinear optimization-based planning framework to
consider tissue deformation during needle insertion [2]. To
consider motion uncertainty due to needle/tissue interaction,
Alterovitz et al. formulated the motion planning problem as a
Markov Decision Process (MDP) using a regular discretiza-
tion of space and orientations [1] and using a sampling-
based approach based on the Stochastic Motion Roadmap
(SMR) [3]. Both these approaches generate a lookup table
using dynamic programming that allows for instantaneous
image-guided control for the steerable needle in a plane
[16]. Scaling these 2D approaches to 3D environments is
complicated by the increased dimensionality of the state
space and permissible motion space.

With the increased use of volumetric medical imaging
techniques such as 3D ultrasound and MRI, it is necessary
to consider needle steering in 3D environments. Park et al.
[15] proposed a diffusion-based motion planning method to
compute steerable needle paths in obstacle-free stiff tissue.
Duindam et al. [7] formulated the 3D motion planning
problem as an optimization problem by representing the
motion of the steerable needle in 3D as a screw motion and
discretizing control space. Duindam et al. [8] proposed an
inverse kinematics solution to analyze the reachability of the
needle tip in obstacle-free environments in both 2D and 3D.
Xu et al. [21], [22] used RRTs to (probabilistically) explore
the entire state space for computing valid needle paths in
3D environments with obstacles. These approaches are not
particularly suited for guiding steerable needles under image-
based feedback due to lack of completeness guarantees or
slow speed combined with the lack of consideration of
uncertainty. Recently, Hauser et al. [10] proposed a method
to perform feedback-based control for steerable needles in
deformable tissue, but the method cannot compute paths that
avoid complex or non-convex obstacles.

In contrast to previous work, we propose a fast, sampling-
based motion planning algorithm for steerable needles that
enables us to achieve orders of magnitude speed-up in com-
parison to previous approaches for motion planning in 3D
environments with complex obstacles and narrow passages.

Our method could be used for interactive control of steerable
needles under 3D imaging feedback and allow physicians
to interactively edit the environment in real-time by adding
obstacles as they are discovered or become relevant.

III. PROBLEM STATEMENT AND ASSUMPTIONS

A. Problem Statement and Objective

Our goal is to guide the tip of a steerable needle to a goal
location in the tissue while avoiding anatomical obstacles.
We assume we have access to medical images or sensor data
that can be used to precisely specify the geometry of the
environment E and the set of obstacle definitions O.

The motion of the needle tip is controlled by two inputs:
the insertion speed v(t) and the rotational speed of the needle
shaft ω(t). The needle bends in the direction of the bevel tip,
as has been experimentally shown in [19]. We assume that
the kinematic motion model for the needle (as described in
detail in Sec. III-B) is completely deterministic and do not
explicitly consider uncertainty due to tissue inhomogeneity
and tissue deformation. This does not preclude re-running the
planner interactively when an unexpected event occurs. We
also assume that the motion of the needle is fully determined
by the motion of the needle tip, and the needle body follows
the motion of the needle tip.

The motion planning problem for a steerable needle can
be stated as follows:

Objective: Given an initial configuration qinit and a desired
needle target zone (containing the goal) Qgoal, determine a
feasible motion plan (control inputs v(t) and ω(t) for time
t ∈ [0, T ]) such that the needle tip reaches the desired target
zone from the initial configuration while avoiding obstacles
and staying within environment bounds.

Input: Description of the environment E , obstacle defini-
tions oi ∈ O, parameters of the steerable needle rn, time
period ∆, an entry configuration of the needle qinit, a target
zone that the needle is required to reach Qgoal.

Output: A feasible motion plan in terms of a sequence
of discrete controls v(t) and ω(t) with which the needle is
steered from the given entry point to reach the target zone,
or report that no path is found.

The planner we introduce in this paper can solve the
above motion planning problem at interactive rates, which
enables us to consider two extensions. First, when time
is available, we can execute the planner multiple times to
compute different solutions and select an optimal solution
under some optimization criteria. Second, we can generalize
the problem to not only compute an optimal motion plan but
to also select an optimal needle insertion start configuration.
In this case, the problem is to compute a motion plan that
minimizes the optimization criterion over all possible needle
insertion start configurations qinit for a given scenario.

When selecting an optimal motion plan from a set of
feasible motion plans, our goal is to damage the least
amount of tissue (e.g. shortest path) while at the same time
maximizing clearance from obstacles to ensure avoidance
even when unexpected needle deflections occur. To formalize
the trade-off between these two competing objectives, we
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Fig. 2. Needle kinematic model in world reference frame Ψw . A body
coordinate frame Ψn is rigidly attached to needle tip. The axes are aligned
such that the z-axis is the direction of forward motion, and the bevel tip
causes the needle to rotate instantaneously around the line parallel to the
x-axis and passing through the point (0,−rn, 0). The needle path (shown
in orange) is parameterized as a triplet (l, rn, θ).

express the planning objective in terms of minimizing the
following optimization criterion:

J(v, ω, T ) = αl

∫ T

0

|v(t)|dt+
αo
T

∫ T

0

(−JO(pwn(t)))dt

(1)
where JO(pwn(t)) represents the distance of the needle tip in
world coordinates, pwn(t), from the closest obstacle oi ∈ O.
By appropriately adjusting the weights αl and αo, we can
bias the tradeoff between computing shortest paths and paths
of maximum clearance from the obstacles. It should be noted
that the planning algorithm is independent of the choice of
the optimization criteria.

B. Needle Kinematic Model

We model steerable needle motion in 3D using a deter-
ministic motion model in which the needle tip moves along
an approximate circular arc of constant radius of curvature
rn = 1/κn in the direction of the bevel [19]. Following
the model of Duindam et al. [7], the kinematics equations
of the steerable needle are invariant to time scaling, in the
sense that the path traced out by the needle does not change
if the control inputs v(t) and ω(t) are scaled by the same
(possibly time-varying) factor. Therefore, the given motion
planning problem can be simplified by assuming without
loss of generality that v(t) ≡ 1, which is equivalent to
parameterizing the trajectory by insertion depth.

Fig. 2 illustrates the model setup. A body coordinate
frame Ψn is rigidly attached to the tip of the needle. The
axes are aligned such that the z-axis is the direction of
forward motion, and the bevel tip causes the needle to
rotate instantaneously around the line parallel to the x-axis
and passing through the point (0,−rn, 0). The position and
orientation of the needle tip relative to a world reference
frame Ψw can be described compactly by a 4 × 4 matrix

gwn(t) ∈ SE(3) of the form gwn(t) =

[
Rwn(t) pwn(t)

0 1

]
,

where Rwn(t) ∈ SO(3) is the rotation matrix describing the
relative orientation, and pwn(t) ∈ R3 is the vector describing
the relative position of coordinate frames Ψw and Ψn.

The instantaneous linear and angular velocities of the
needle are described by a twist Vwn(t) ∈ se(3) [13], which
in body coordinates Ψn is expressed in matrix notation
V̂ nwn(t) ∈ se(3) as:

V̂ nwn(t) =


0 −ω(t) 0 0
ω(t) 0 −v(t)/rn 0

0 v(t)/rn 0 v(t)
0 0 0 0


The twist relates to gwn as: ġwn(t) = gwn(t)V̂ nwn(t). When
the twist is constant, the above equation becomes a linear
ordinary differential equation that can be integrated as:

gwn(t) = gwn(0) exp(tV̂ nwn) (2)

for which a relatively simple analytic expression exists [13].
We refer the reader to [19] for additional details.

In recent work, Minhas et al. [12] relax the constraint
of constant-curvature trajectories for the steerable needle by
performing duty cycling. By constantly spinning the needle
during insertion at a speed much greater than the insertion
speed (w(t) � v(t)), proportional control of the curvature
of the needle trajectory through the tissue can be achieved.
This results in needle trajectories of bounded-curvature (κ <
κn, or equivalently, r > rn). Duty cycling provides even
greater mobility for the steerable needle, resulting in faster
computation of feasible trajectories and motion plans.

Let the insertion time T be discretized into regular time
periods as {∆, 2∆, . . . , T}. In order to incorporate a duty
cycle factor of τ (proportion of the duty cycle period ∆
spent in constantly rotating the needle during insertion) into
the needle kinematic model, the control inputs of the needle
(v(t), ω(t)) are adjusted as:

v(t) = vfixed ≡ 1

ω(t) =

{
2kπ
τ∆ if j∆ ≤ t ≤ ∆(j + τ)

0 if ∆(j + τ) < t < (j + 1)∆
(3)

for any j ∈ Z and where k is a sufficiently large constant
such that the condition ω(t)� v(t) is satisfied. Minhas et al.
[12] experimentally verified that when using duty cycling, the
duty cycle factor τ is inversely proportional to the curvature
κ and is given by τ = (1− (κ/κn)).

For the purposes of this work, we construct trajectories for
steerable needles that are composed of piece-wise circular
arcs {C1, C2, . . . , CN} (as described in Sec. IV). Each cir-
cular arc segment Ci is parameterized as a triplet (li, ri, θi),
where li is the arc length, ri is the arc radius, and θi is the
change in orientation of the needle tip coordinate frame Ψn

around the z-axis (as illustrated in Fig. 2). Given a feasible
needle trajectory, the motion plan (described as a sequence of
discretized control inputs) can be extracted using the concept
of duty cycling described above (as outlined in Sec. IV-B).



Algorithm 1 T ← BUILD NEEDLE RRT(qinit, Qgoal)

1: T ← INITIALIZE TREE(qinit)
2: while (T ∩Qgoal = ∅ and k < K) do
3: repeat
4: prand ← RANDOM POINT R3()
5: Qreach = ∅
6: for all qi ∈ T do
7: if REACHABLE(prand, qi) then
8: Qreach ← Qreach ∪ qi
9: end if

10: end for
11: until Qreach = ∅
12: qnear ← NEAREST NEIGHBOR R3(prand, Qreach)
13: u← SOLVE PARAMETERS(qnear, prand, T )
14: qnew ← NEW STATE(qnear, u)
15: if VALID EDGE(qnear, qnew, u) then
16: T ← ADD VERTEX(qnew)
17: T ← ADD EDGE(qnear, qnew, u)
18: end if
19: k ← k + 1
20: end while
21: return T

IV. METHOD

We present a sampling-based motion planning algorithm
for computing feasible motion plans for steerable needles in
3D environments with obstacles. Our approach proceeds in
two phases. First, we compute a geometric trajectory using
an RRT-based planner. Second, we convert the geometric
trajectory into a motion plan (needle insertion velocity and
twists) based on duty cycling.

A. Computing Feasible Geometric Trajectories

We use an RRT-based motion planning algorithm, aug-
mented with a reachability-guided sampling heuristic pro-
posed by Shkolnik et al. [18], to compute feasible trajectories
for the steerable needle. The algorithm is outlined in Alg. 1.
Given an initial configuration qinit and a goal region Qgoal,
the planner incrementally builds a set T of inter-connected
configurations that form a tree-like structure over the state
space of the steerable needle, while respecting the nonholo-
nomic constraints of the needle motion model and avoiding
obstacles in the environment. This process is repeated until
either the tree T connects the initial configuration and
the goal region, or the maximum number of iterations is
exceeded, in which case the algorithm reports that a solution
cannot be found. A path connecting qinit to qgoal ∈ Qgoal can
then be found by traversing the tree from the goal to the
root.

In a classic RRT algorithm [11], the tree is expanded
iteratively. A random configuration qrand is sampled from
the state space X according to a predefined sampling dis-
tribution. The algorithm then identifies the node in the tree
qnear, that is closest to the configuration qrand, as defined
by a specified distance metric ρ(q). The algorithm then
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Fig. 3. The reachable set for the steerable needle in the local coordinate
frame of the needle-tip Ψn is constrained to be inside the volume of the
region defined locally by Eq. 4 (shown by the colored mesh). Point p =
(px, py , pz) can be reached by the needle tip.

attempts to expand T towards qrand based upon the best
known control input u that drives the configuration qnear
towards qrand and the resulting configuration qnew is added
to the tree. For a nonholonomic system like the steerable
needle, previous approaches [21], [22] rely on deterministic
or uniform random sampling of control inputs to determine
the control input u : (v, ω) that results in a new configuration
qnew that is closest to qrand, which is a major computational
bottleneck.

To avoid having to perform random sampling of control
inputs to compute the best control input, we encode segments
of a needle trajectory using geometric quantities instead of
the actual control inputs (v, ω). Each trajectory is composed
of piece-wise circular arcs {C1, C2, . . . , CN}, where each
circular arc Ci is parameterized as a triplet ui : (li, ri, θi)
as described in Sec. III. The control inputs are derived later
from a given trajectory as explained in Sec. IV-B.

Under the bounded-curvature assumption, we can solve
for the exact trajectory parameters u : (l, r, θ) (routine
SOLVE PARAMETERS in Alg. 1) as follows. We adopt a
modified sampling strategy in which we sample a random
point prand ∈ R3 as opposed to sampling a random configu-
ration from the state space X (routine RANDOM POINT R3
in Alg. 1). For the needle tip configuration specified by
configuration q, the reachable set comprising of all points
prand : {px, py, pz} ∈ R3 that can be reached by the needle
tip is constrained to be inside the volume of a region defined
locally by

pz ≥
√

2rn

√
p2
x + p2

y − (p2
x + p2

y) (4)

as shown in Fig. 3. The reachable set of configuration
q has to satisfy the above reachability condition (routine
REACHABLE in Alg. 1). It should be noted that previous
approaches [21], [22] constrained the needle reachable set to
be on the surface of the region illustrated in Fig. 3, while
the reachable set under the bounded-curvature assumption is
the entire volume inside the region.

Let C : (l, r, θ) be a circular arc connecting the config-



uration q to point prand lying within the reachable set of q.
Expressing the point prand in polar coordinates with respect
to the needle tip reference frame Ψn gives us the following
relations: px = r cos θ(1 − cosφ), py = r sin θ(1 − cosφ),
pz = r sinφ, l = rφ. The exact parameters u : (l, r, θ)
associated with the circular arc C can then be extracted as:

θ = tan−1
(py
px

)
r =

p2
y + p2

z sin2 θ

2 sin θ
(5)

l = rφ = r tan−1
( κpz

1− (κpy/ sin θ)

)
The 4× 4 transformation matrix gi that encodes the final

configuration of the needle tip qnew in the local coordinate
frame Ψn of the configuration q (corresponding to the
circular arc Ci) is given by:

gi =


−sinθ −cosθcosφ cosθsinφ rcosθ(1− cosφ)
cosθ −sinθcosφ sinθsinφ rsinθ(1− cosφ)

0 sinφ cosφ rsinφ
0 0 0 1


The final configuration of the needle tip qnew in the world

coordinate frame ΨW can be analytically computed as
(routine NEW STATE in Alg. 1) gnew

wn =
∏N
i=1 gi.

Reachability-Guided Sampling Heuristic: The efficiency
with which the RRT algorithm is able to grow the tree and
explore the state space is highly sensitive to the distance
metric ρ(q) used to compute the nearest node in the tree. In
the presence of kinematic and dynamic constraints, widely-
used metrics like the Euclidean distance are a very poor
approximation of the true distance between points in the
constrained state space. The performance of the RRT planner
degrades as a result of repeated attempts at extending the
same nodes in the tree without making sufficient progress. It
is also often difficult to specify a good distance metric for
complicated nonholonomic systems like the steerable needle.
We use the reachability-guided sampling scheme suggested
by Shkolnik et al. [18] to alleviate the sensitivity of the
RRT planner to the choice of the distance metric through
a variation of the nearest-neighbor strategy that restricts
the search domain to only those nodes that are within the
reachable set of the nearest node qnear, thus increasing the
likelihood of expansion of the state space.

As indicated in lines (3 − 11) of Alg. 1, the sampling
strategy rejects any random points prand ∈ R3 that do not lie
within the reachable set of any node in the tree T as deter-
mined by the reachability condition given in Eqn. 4. We used
the standard Euclidean distance metric in R3 for choosing the
nearest configuration qnear from the set of feasible tree nodes
Qreach that satisfy the reachability criterion. We also include
a small goal bias [11] in our experiments to bias the growth
of the tree towards the goal region. From our experiments,
we have observed that the reachability-guided sampling
and goal-bias heuristic yield dramatic improvements in the
performance of the RRT planner.

Fig. 4. Convex decomposition is used to decompose arbitrary, triangular
meshes into approximate convex pieces and their corresponding Oriented
Bounding Boxes or OBBs (shown in blue) for efficient collision detection
detection and distance queries [4].

Collision Checking: An important component of the RRT-
based planner is to check if a random configuration qrand
or the circular arc connecting the configurations qnear and
qnew is valid, i.e. collision-free with respect to obstacles
in the environment (routine VALID EDGE(qnear, qnew, u) in
Alg. 1). It is necessary to have an efficient collision checking
routine for arbitrary, polyhedral obstacles in order to plan
at interactive rates. In practice, the obstacle definitions are
obtained from segmentation of 3D scans obtained from
imaging devices and it is possible that the triangular surface
mesh representing the obstacle may be non-manifold. In this
case, any point-in-polyhedron test fails because the mesh is
non-manifold or not closed. We use the open-source convex
decomposition library distributed with the Bullet Physics
library [4] to decompose the mesh into approximate convex
pieces and their corresponding Oriented Bounding Boxes
(OBB), which can be used for efficient collision detection
and distance queries (as shown in Fig. 4).

B. Computing Motion Plan from Geometric Trajectory

Given the feasible geometric trajectory composed of piece-
wise circular arcs {C1, C2, . . . , CN}, we next compute a
motion plan comprising of a sequence of controls (v(t), ω(t))
that specifies needle insertion velocity and twists to reach the
target and avoid obstacles.

As described in Sec. III, without loss of generality we
assume v(t) = vfixed ≡ 1. This is equivalent to parameteriz-
ing the trajectory by insertion distance instead of time. One
side-effect is that we have to allow for impulsive ω(t) when
changing the needle tip orientation when v = 0, but this does
not pose any limitations. The duration of needle insertion
Ti corresponding to the segment Ci is given by Ti =
li/vfixed ≡ li. Let Ti be discretized into regular time periods
∆ as {∆, 2∆, . . . , Ti}. The control inputs corresponding to
segment Ci are then given by:

v(t) = vfixed ≡ 1, 0 < t ≤ Ti

ω(t) =


θ if t = 0

2kπ
τ∆ if j∆ ≤ t ≤ ∆(j + τ)

0 if ∆(j + τ) < t < (j + 1)∆
(6)

for any j ∈ Z and where k is a sufficiently large constant
such that the condition ω(t)� v(t) is satisfied. The first term
ω(t) = θ at t = 0 corresponds to the correction of the needle
orientation at the beginning of segment Ci. The second and
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Fig. 5. Test Case 1: Spherical Obstacles. The rectangular entry region
is shown as a black rectangle at the base of the environment. (a) Optimal
needle trajectory that minimizes the needle insertion depth (αl = 1, αo =
0). (b) Optimal needle trajectory that maximizes the clearance from the
obstacles (αl = 0, αo = 1).

third relationships correspond to using duty cycling for the
duration Ti (as given in Eqn. 3). Given the control inputs, the
needle trajectory can be computed as outlined in Sec. III-B.

V. RESULTS

We implemented the motion planner in C++ and tested it
on a 3.33 Ghz 4-core Intel R© i7TM PC. The radius of curvature
of the steerable needle inside tissue is assumed to be 0.05
m, which is approximately the radius of curvature achieved
for steerable needles in recent experiments [9], [16].

We consider three test environments as shown in Figs.
5, 6, and 7. For each test case, we model the environment
to be a cubical region measuring 0.2 m along each axis.
We model the goal target zone Qgoal as a spherical region
with a radius of 0.002 m. We set the maximum number of
iterations for the RRT planner to 5000 and the goal bias
factor to 0.25. To optimize the motion plan, we execute the
RRT planner for 100 different initial configurations, each
chosen using a uniform random distribution in the entry
region, which is modeled as a rectangular region centered
at (0.1 m, 0.1 m, 0.0 m), and select the motion plan that
minimizes the optimization criterion. For fast performance,
the RRT planner executions are run in parallel across the
available processing cores using OpenMP.
Test Case 1: Spherical Obstacles: We define an environ-
ment consisting of six spherical obstacles, each of radii
0.02 m, based on the test case defined in Xu et al. [21]. Fig. 5
shows the needle motion plans computed by our planner. For
this test case, Xu et al. [21] report that their RRT motion
planner has a success rate of 50% and takes an average
of 1851 seconds to compute a feasible motion plan on an
Intel Centrino R© 1.66 Ghz processor while our approach has
a 100% success rate and takes an average of 0.002 seconds to
compute a single feasible plan on a single core of an Intel R©

i7 3.33 Ghz processor.
Test Case 2: Cylindrical Obstacles: We define an en-
vironment consisting of two orthogonal cylinders as used
for demonstration by Chentanez et al. [5]. The target is
positioned such that the needle must be maneuvered around

(a) (b)

Fig. 6. Test Case 2: Cylindrical Obstacles. The size and close proximity
of the cylindrical obstacles introduces narrow passages in the steerable
needle’s configuration space. (a) Optimal needle trajectory (shown in red)
that minimizes the needle insertion depth (αl = 1, αo = 0). (b) Optimal
needle trajectory that maximizes the clearance from the obstacles (αl =
0, αo = 1).

both obstacles. The size and close proximity of the cylin-
drical obstacles introduces narrow passages in the steerable
needle’s state space. Fig. 6 shows the needle motion plans
computed by the planner. In this case, the weights (αl, αo) of
the optimization criterion (Eqn. 1) can be interactively tuned
to achieve a desired trade-off between choosing a shortest
path that runs very close to obstacles and a path of maximal
clearance that is unnecessarily circuitous.
Test Case 3: Prostate Anatomy: To simulate the en-
vironment encountered by physicians performing prostate
brachytherapy cancer treatment, we use a model of anatom-
ical obstacles including the urethra, penile bulb, pubic bone,
and seminal vesicles around the prostate as in Xu et al. [22].
The obstacles are defined using triangular meshes. Fig. 7
shows the needle trajectories computed by the planner. When
minimizing insertion depth, the planner routes the needle
through the narrow passage between the pubic bone and
the penile bulb. This narrow passage is avoided when the
optimization criterion is changed to maximize the clearance
to the obstacles.
Method Performance: Table I summarizes the performance
of our system on the three test cases. The third column re-
ports the percentage of successful runs among multiple runs
starting from 100 different initial configurations. The fifth
column reports the CPU times (mean ± standard deviation)
needed to compute a single feasible plan. The sixth column
reports the total CPU time (incorporating parallelization)
taken to compute an optimal motion plan chosen from
among all trial runs. The results indicate that our method
can be used to interactively compute hundreds of feasible
motion plans for steerable needles in under a second even in
challenging 3D environments with polyhedral obstacles and
narrow passages.

Test #Trials % Successful Avg. no. Avg. CPU Total CPU
Case runs iterations time (secs) time (secs)

1 100 100 165 (± 118) 0.0021 (± 0.0017) 0.026

2 100 100 1202 (± 838) 0.0386 (± 0.0463) 0.483

3 100 100 435 (± 239) 0.0438 (± 0.0295) 0.548

TABLE I
PERFORMANCE OF OUR APPROACH ON THE THREE TEST CASES.
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Fig. 7. Test Case 3: Prostate Anatomy. To simulate the environment encoun-
tered by physicians performing prostate brachytherapy cancer treatment, we
use a model of anatomical obstacles including the urethra, penile bulb, pubic
bone, and seminal vesicles around the prostate (labeled in Fig. 1) as in Xu
et al. [22]. (a) Optimal needle trajectory (shown in red) that minimizes
needle insertion depth (αl = 1, αo = 0). (b) Optimal needle trajectory that
maximizes the clearance from the obstacles (αl = 0, αo = 1).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a fast algorithm that can
compute motion plans for steerable needles to reach targets in
complex, 3D environments with obstacles at interactive rates.
Prior methods for this problem require multiple seconds or
minutes to compute a single motion plan [7], [21], [22];
our motion planner offers an orders of magnitude speed-up
compared to prior work by computing hundreds of feasible
motion plans in less than a second.

The fast computation makes this method suitable for
online control of the steerable needle based on 3D imag-
ing feedback and allows physicians to interactively edit
the planning environment in real-time by adding obstacle
definitions as they are discovered or become relevant. We
achieve this fast performance by using a Rapidly Exploring
Random Tree (RRT) combined with a reachability-guided
sampling heuristic to alleviate the sensitivity of the RRT
planner to the choice of the distance metric. We also relax
the constraint of constant-curvature needle trajectories by
relying on duty cycling to realize bounded-curvature needle
trajectories. The fast performance also provides a family of
solutions, enabling the clinician to select a high quality plan
based on an optimization criterion.

In future work, we plan to integrate our planner with a
real-time feedback controller operating under sensing feed-
back and carry out experiments on tissue phantoms. We will
utilize the ability of this planner to compute motion plans at
interactive rates in order to rapidly re-plan when unexpected
events occur due to tissue inhomogeneity, tissue deformation,
and estimation errors in motion model parameters.
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