
Motion Planning Under Uncertainty for Steerable Needles

Real-time ControlMotivation LQG-based Planning and Control

Motion 

Planner

Model 

Linearization

LQG 

Controller

Deformable 

Simulator
Select high 

quality plan

Problem 

Definition

Motion Plan & 

Controller

We perform real-time control for the steerable needle in 3D

deformable tissue using a model-predictive controller (MPC),

which steers the needle along 3D helical trajectories, and

varies the helix radius to correct for perturbations.

We derive a Linear Quadratic Gaussian (LQG) controller that keeps the

steerable needle close to the planned trajectory when subject to

actuation noise and only partial, noisy sensor feedback.

 Steerable needles are controlled within

deformable tissue by inserting and

twisting the needle externally at its base.

 Guiding the needle to a desired target

is challenging for a human operator due

to anatomical obstacles, nonholonomic

motion, and limited sensor feedback.

 Motion planning algorithms can assist

physicians by automatically computing

safe motion plans.

We characterize a priori probability distributions of the needle-tip states

for a steerable needle operating under LQG control. We then use this

to select optimal motion plans and corresponding sensor placements.

Needle Steering in Planar Tissue Slices

We perform real-time re-planning for the steerable needle in

3D environments with obstacles, using a Rapidly Exploring

Random Tree (RRT) planner with the following key features:

 Reachability-guided sampling

 Duty-cycling to plan bounded curvature needle trajectories

This allows us to generate several candidate plans in real-time

of which an optimal plan can then be chosen based on a user-

supplied optimality criterion (such as distance or clearance).
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effects of uncertainty and maximizes the probability of

successfully avoiding obstacles and reaching the target.
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 Modeling errors and uncertainty introduced by: (i) noisy

actuation, (ii) noisy sensing, and (iii) disturbances due to tissue

deformations. These must be accounted for during planning.

Shortest path, probability of success: 36.7% SMR plan, probability of success: 73.7%
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We apply our interactive planner for real-time re-planning in

3D deformable tissue with obstacles.

Real-Time Re-planning

Planned trajectory (gray) and actual

trajectory using LQG controller (red).

Prostate brachytherapy with steerable 

needles and X-ray imager on C-arm.

Optimal motion plan and 

corresponding C-arm placement

We plan in a simulated 

deformable environment 

and select a high quality 

plan that maximizes the 

probability of success.

Perturbations during open-

loop execution of the 

selected plan cause the 

needle-tip to deviate from 

the intended trajectory.

Our deformation-aware LQG 

controller compensates for 

uncertainty and has considerably 

higher rates of success  as 

compared to prior methods.


