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Abstract—We present an approach for planning ensembles of
channels, ribbons, within 3D printed implants for facilitating
radiation therapy treatment of cancer. The ribbons are traced out
by sweeping a constant width rigid body (cuboid) along spatial
curves. We propose a method for planning multiple disjoint and
mutually collision-free ribbons of finite thickness along curvature
and torsion constrained curves in 3D space. This is equivalent
to planning motions for the cross-section of the ribbon along a
spatial curve such that the cross-section is oriented along the
unit binormal to the curve defined according to the Frenet-
Serret frame. We propose a two-stage planning approach. In the
first stage, a customized sampling-based planner uses rapidly
exploring random trees (RRTs) to generate feasible curvature
and torsion constrained ribbons. In the second stage, the cur-
vature and torsion along each ribbon is locally optimized using
sequential quadratic programming (SQP). We use this approach
to design curved radiation delivery channels inside custom 3D
printed implants that allow temporary insertion of a high-dose
radioactive source that is threaded through the channels using a
wire and allowed to dwell for specified times to expose cancerous
tumors for intracavitary brachytherapy treatment. Constraints
on the curvature and torsion are required for 3D printing (to
allow flushing of sacrificial material) and for smooth insertion
of radioactive sources. In simulation experiments, this approach
achieves an improvement of 46% in tumor coverage compared
with a greedy approach that generates channels sequentially.

Note to Practitioners—Ribbons are used in the design of effi-
cient wiring, plumbing, transportation, architecture, and many
other fields. This paper addresses the challenge of computing
a set of smooth, disjoint ribbons within a constrained space
to reach a specified set of target zones, motivated by the
need to route multiple smooth channels through a custom 3D
printed implant to deliver radiation to cancerous tumors. This
paper proposes combining sampling-based motion planning with
trajectory optimization to compute arrangements of ribbons.
Experiments suggest that the resulting arrangements are superior
to arrangements that consist of each channel in isolation.

Index Terms—Nonholonomic Motion Planning, Underactuated
Systems, Trajectory Optimization, Multi-Robot Motion Planning,
Intracavitary Brachytherapy

I. INTRODUCTION

Our work is motivated by applications where contiguous
pathways or channels have to be routed through 3D envi-
ronments that do not collide with each other or obstacles
in the environment. In particular, we consider a clinical
application of intracavitary brachytherapy where radioactive
doses have to be delivered to cancerous tumors occurring
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Fig. 1. 3D printed implants for intracavitary brachytherapy: Hollow
internal channels (mutually collision-free) embedded within a 3D printed
implant for delivering radiation to tumors (red). The channels provide passage
to radioactive sources. The candidate dose dwell segments (shown in dark
blue) are aligned tangentially and placed proximal to the tumors to achieve
sufficient dose distribution to the tumor volume while minimizing radiation
exposure to healthy tissue. (a) Single channels computed using the approach
of Garg et al. [24]. (b) Compared to single channels, multiple channels in
ribbon-like arrangements can increase coverage of the tumor volume that is
directly irradiated, leading to improved treatment outcomes. The challenge
is to generate such mutually collision-free, curvature and torsion constrained
ribbons from the candidate dwell segments to the entry region while staying
within the implant volume.

in body cavities such as oral, rectal, gynecological, auditory,
and nasal. Garg et al. [24] demonstrated that 3D printing can
be used to design customized implants that conform to the
patient anatomy. These implants allow precise positioning of
radioactive sources that sufficiently irradiate the tumors while
minimizing radiation to healthy tissues, which can potentially
improve treatment outcomes. These implants have hollow
internal channels that provide passage to radioactive sources.
Garg et al. constructed implants with mutually collision-free
channels with curvature constraints that provide passage to
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(a) Radioactive source used for brachytherapy

(b) 3D printed implants with catheters inserted through hollow channels

Fig. 2. (a) Schematic of a typical 192IR source used in GYN Brachytherapy
[10]. The source, typically 5 mm, imposes a constraint on the maximum
instantaneous curvature of the channel. (b) A prototype 3D printed implant
with multiple catheters inserted through the channels. The catheters have
limited flexibility and have to be pushed/pulled through the channels during
treatment, which imposes a constraint on the cumulative curvature and torsion
(or twist) along the channel. This is also important from a fabrication
perspective since the channels are printed with soluble support material that
is later dissolved. Unnecessary turns and twists in the channels prevent the
support material from being completely dissolved, thus resulting in blockages.

catheters carrying a radioactive source (Figs. 1(a) and 2(b)).
The effectiveness of these implants for radiation treatment

depends on how effectively candidate locations for placing
the radioactive seed can cover the tumor surface proximal to
the implant. We refer to these locations as candidate dose
dwell segments (Fig. 1(a)). The use of single channels is
not sufficient for large tumors. In this work, we address
this issue by generating contiguous channels within the 3D
printed implant. The resulting arrangement of channels looks
like a ribbon (Fig. 1(b)). These ribbon-like arrangements are
compact, thus allowing for a larger number of channels to
be embedded within the implant. This results in increased
coverage and hence sufficient dose distributions can be applied
to large tumor volumes. One could also consider alternate
arrangements such as bundles. However, each channel in the
bundle would have a different curvature and torsion, which
is difficult from the perspective of planning to generate such
arrangements.

The channels in these ribbons have to allow a radioactive
source, typically 5 mm (Fig. 2(a)) in length, to pass through.
This imposes a constraint on the maximum instantaneous
curvature of the channels within the ribbon-like arrangement
[24]. The ribbons should also be continuous and differentiable
(at least C1-continuous) since kinks in the ribbon would not
allow catheters to pass through the channels. The catheters
carrying the radioactive source also have limited flexibility
and have to be pushed/pulled through the channels during
treatment, which imposes a constraint on the cumulative cur-
vature and torsion (or twist) along the ribbon. In addition, each
customized implant would have multiple channels that provide

access to different tumors and these channels would have
to be mutually collision-free since any intersection between
channels would lead to forks within the channels, potentially
leading to undesirable ambiguity in the motion of a catheter
when pushed through a channel.

Imposing constraints on the curvature and torsion is also
important from the perspective of fabricating these implants.
During the printing process, the spatial volume corresponding
to channels is printed with a soluble support material that is
later dissolved to create hollow channels [36]. This is a diffi-
cult problem in fabrication in general. However, unnecessary
turns (curvature) and twists (torsion) in the channels further
complicate this process by preventing the support material
from being completely dissolved, thus resulting in blockages.
Such implants are rendered unusable because the catheters
cannot reach the desired dwell segments.

In this work, we consider the problem of generating such
curvature and torsion constrained ribbons in 3D spaces that
avoid collisions with obstacles and other ribbons. In geometry,
a ribbon is a swept surface traced out by sweeping a constant
width rigid body (cuboid) along a spatial curve. In our
application, we consider a rigid body that describes the cross-
section of the channels in a ribbon. The rigid body being
swept out is oriented along the unit binormal to the curve.
There are infinitely many choices of orthonormal frames [9]
along a spatial curve for orienting the rigid body. In our work,
we choose the Frenet-Serret frame which can be explicitly
described in terms of the curvature and torsion along the
curve [9]. However, our approach would also generalize to
other choices of frames such as Bishop’s frame, also known
as rotation minimizing frames [9], [60].

We adopt a two stage approach for generating ribbons with
the aforementioned specifications. We use a rapidly-exploring
random trees (RRT) planner [34] that sequentially generates
feasible curvature and torsion constrained candidate ribbons
in a greedy fashion. These planners explore the configuration
space by random sampling. However, the randomized nature of
these planners can cause unnecessary changes in curvature and
torsion along the ribbon. We locally minimize the curvature
and torsion by using an optimization method based on sequen-
tial quadratic programming (SQP) [19] that simultaneously
optimizes over all the ribbons. In doing so, we combine the
benefits of a global exploration strategy using a randomized
planner and a local optimization strategy to generate high
quality ribbon trajectories.

We study the effectiveness of our approach for designing
multiple ribbon-like arrangements of channels within 3D im-
plants. We show that ribbon-like arrangements allow us to
embed a larger number of channels within the implant as
compared to prior work that embeds single channels [19],
[24]. As a result, ribbon-like arrangements like the one shown
in Fig. 1(b), lead to improved coverage of the tumor volume
(46% improvement in our experiments), which allows for more
effective treatment.

II. RELATED WORK

The geometry of swept surfaces and swept volumes has
been extensively studied in the literature [21], [49]. A ribbon is
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a particular example of a swept surface where a constant width
rigid body is swept along a spatial curve [22], [28]. Ribbons
find applications in a number of domains including computer
aided geometric design [55], deformation of 3D shapes in solid
modeling [37], modeling geometry of DNA strands [26] and
polymers [12], [14], planning layout arrangements of roads
[62], routing cables and wires in assembly tasks, and path
planning of rigid formations of nonholonomic vehicles [3],
[33]. Sampling-based planning was used to generate variable
width ribbon-like paths between a camera and moving object
in the environment [25]. The computed paths were smoothed
to generate pleasing camera motions. The notion of grouping
parallel paths, similar to ribbons, has also been studied for
coverage applications in robotics such as machine milling,
lawn mowing, and planning search and rescue operations [13].

Planning smooth motions of rigid bodies in 3D has also been
studied [3], [8], [16], [66]. This requires planning in the space
of 3D positions and orientations, also commonly referred to
as the SE(3) group. However, prior work has addressed the
issue of generating minimum cost trajectories that inherently
minimize curvature and torsion along the trajectory in environ-
ments without obstacles. Prior work on trajectory optimization
on Lie groups has proposed Newton-like optimization methods
[1], direct (collocation) methods for trajectory optimization for
continuous time optimal control problems [47], a discrete vari-
ational formulation [32], and primitive-based motion planning
[23]. However, these approaches do not address the issue of
avoiding collisions with obstacles in the environment.

We also note that the motion model that describes the
evolution of the ribbon surface also applies to other domains,
including modeling the motion of an airplane, a roller coaster,
or bevel-tipped steerable needles [61]. In the case of steerable
needles, the rigid body is assumed to be a point while in the
case of the continuum robots, the rigid body is assumed to
have a circular cross-section. In particular, motion planning
for steerable needles has been extensively studied [2], [19],
[44], [59], [64]. Our approach can be used to explicitly limit
the torsional rotation of the needle, thus potentially improving
planning and control of steerable needles [57]. In recent years,
extensions to planning curvature-constrained trajectories in 3D
have been proposed for unmanned aerial vehicles (UAVs) in
environments without obstacles [20], [52], and with obstacles
[30], [65].

Prior work has also explored the topic of modeling and
finding minimum energy configurations of linear deformable
objects such as suture threads [11], [41] and elastic ribbons or
strips [5], [12]. The equilibrium or minimum energy configura-
tions of these elastic objects inherently minimize curvature and
torsion along the length of the object. These methods could
be used to compute a ribbon configuration that minimizes
curvature and torsion. However, it is not clear if they could
impose constraints on the curvature and torsion along the
length of the ribbon. Furthermore, these methods do not
consider generation of collision-free configurations directly,
and instead generate a sequence of deformations in the object
that avoid collisions with obstacles [11], [41]. In our work, the
ribbons are not physically-based and the fabrication process
allows us to embed these ribbons within the 3D volume. We

can thus generate ribbons by planning motions for a rigid body
that describes the ribbon cross-section.

In this work, we consider a clinical application involving
cancer treatment using brachytherapy. Automation science has
been applied to a number of healthcare applications to better
treatment quality by improving repeatability and reliability.
Huang et al. [29] studied planning of robotic therapy and
task-oriented functions for hand rehabilitation, Solis et al. [54]
explored the use of automation for studying human motor
skills for medical task training. Mendez et al. [40] studied
automation of drug delivery during anesthesia, and Subburaj et
al. [56] studied computer assisted joint reconstruction surgery.

There are a number of commercially available implants (also
known as applicators) for treating cervical and vaginal cancers,
for e.g. the Fletcher applicator [17] and the Utrecht applica-
tor [6]. Incorrect placement of these applicators and patient
movement can cause shifts in the applicator position and hence
result in undesired doses. Magne et al. [38] proposed the use
of a customized silicone implant created using a plaster mold
of the cavity and two linear catheter are embedded within the
implant.

Garg et al. [24] proposed a novel approach for designing
customized 3D printed implants that use MRI/CT scans to
reconstruct a precise 3D model of patient anatomy. This model
is provided as input to a sampling-based RRT planner to
generate individual, curvature constrained channels that can be
embedded within a 3D printed implant of the same shape as
the cavity. Recent advances in 3D printing are poised to have
major impact on many fields including healthcare [36]. Non-
toxic, FDA approved materials are allowing 3D printed parts to
be used for medical applications [39] such as bone replacement
and oral surgery implants. Garg et al. also proposed a metric
for effectiveness of treatment in terms of coverage of the tumor
volume. Duan et al. [19] used an optimization-based method
to compute arrangements for individual channels.

In contrast to Garg et al. [24] and Duan et al. [19], we
consider the problem of generating ribbon-like arrangements
of contiguous channels. Also, both approaches use a stop-and-
turn strategy for modeling the kinematics, which is inconse-
quential for a single channel but would induce an instanta-
neous torsional twist in the ribbon. We consider a different
kinematic model of the evolution of the ribbon that explicitly
considers torsion to model the twist along the ribbon. We
also combine the benefits of sampling-based and optimization-
based planning methods instead of using them in isolation and
show that a combination of the two methods is important for
generating high-quality ribbons.

This paper is an extended version of a conference paper pre-
sented by the authors at the WAFR 2014 [45]. In this revised
version, we provide additional details about design considera-
tions of 3D printed implants for intracavitary brachytherapy, a
thorough survey of related work, and additional details about
the sampling-based RRT planner, optimization formulation,
and the coverage metric for evaluation. We also present addi-
tional experimental results on simulated scenarios and analyze
the effect of factors such as sequential versus simultaneous
planning and possible scenarios for failure.
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Fig. 3. A ribbon is a swept surface traced out by sweeping a rigid body (cuboid) along a spatial curve. The ribbon-like arrangement is used for routing
multiple channels. A cross-section of the ribbon is shown. At each point along the curve, the rigid body is oriented according to the Frenet-Serret frame,
where the xt , yt , and zt axes in the local coordinate frame of the rigid body are oriented along the tangent tt (red), normal nt (green), and binormal bt
(blue) vectors of the curve. We consider the problem of generating such curvature and torsion constrained ribbons through 3D space that avoid collisions with
obstacles in the environment.

III. KINEMATIC MODEL OF THE RIBBON

In this section, we define the kinematic model of how a
ribbon can be constructed by sweeping a rigid body corre-
sponding to the cross-section of the ribbon along a given
continuous and differentiable spatial curve in 3D space.

Let pt = [xt ,yt ,zt ]
T ∈ R3 be a 3D point on a spatial curve

parameterized by parameter t. At each point pt , we can define
an orthonormal frame specified by the tangent tt , normal nt ,
and binormal vectors bt given by [9]

tt =
ṗt

‖ṗt‖
, (1a)

nt =
ṫt

‖ṫt‖
, (1b)

bt = tt ×nt . (1c)

Intuitively, the tangent vector tt is a unit vector tangent to the
curve that points in the direction of motion, nt is a unit vector
that is normal to both the tangent vector and the curve itself,
and the binormal vector bt is defined as the cross product of
the tangent and normal vectors.

To define the local configuration of the ribbon cross-section
at a given parameter value, we need to define an orthonormal
frame at the given point (Fig. 3). There are infinitely many
choices for such a frame [9]. In this work, we choose the
Frenet-Serret frame, the evolution of which can be described
in terms of the curvature and torsion of the spatial curve,
which are quantities of interest in this work. We note that
our algorithmic approach also applies to other choices of the
orthonormal frame such as the Bishop’s frame, which is also
known as the rotation minimizing frame (RMF) [9], [60].

The Frenet-Serret frame is oriented so that the xt , yt , and
zt axes in the local coordinate frame of the rigid body are
oriented along the tangent, normal, and binormal vectors of
the curve. The pose of a rigid body oriented according to
the Frenet-Serret frame at point pt can be written as a 4× 4
transformation matrix Xt ∈ SE(3) given by

Xt =

[
Rt pt
0 1

]
=

[
tt nt bt pt
0 0 0 1

]
, (2)

where the 3× 3 rotation matrix Rt = [tt |nt |bt ] ∈ SO(3) de-
scribes the orthonormal frame in terms of tt , nt , and bt .

For a given parameter t, the Frenet-Serret frame evolves
according to the following differential equations of motion as

given by [9] [28] as

ṫt = vtκtnt , (3a)
ṅt =−vtκt tt + vtτtbt , (3b)

ḃt =−vtτtnt , (3c)
ṗt = vt tt , (3d)

where vt is the speed of the spatial curve, κt is the curvature,
τt is the torsion of the spatial curve for a given parameter t,
and the dot operator indicates the derivative with respect to
the parameter t. We note that the Frenet-Serret frame does not
exist at points where the speed or curvature vanishes. Since we
consider spatial curves, the speed is never zero. Hence, for the
remainder of this manuscript, we will assume that the degen-
erate case of curvature κt = 0 is never encountered. During
planning, we mitigate this problem by adding a small non-
zero perturbation factor (0.01 in our experiments) whenever
the degenerate case of κt = 0 is encountered.

We follow the analysis of Selig et al. [51] to rewrite these
equations of motion as

[
ṫt ṅt ḃt ṗt
0 0 0 0

]
=

[
tt nt bt pt
0 0 0 1

]
0 −vtκt 0 vt

vtκt 0 −vtτt 0
0 vtτt 0 0
0 0 0 0

 . (4)

Using Eqs. (2) and (4), we get the following relation

Ẋt = Xt


0 −vtκt 0 vt

vtκt 0 −vtτt 0
0 vtτt 0 0
0 0 0 0

= XtUt , (5)

where Ut ∈ se(3) is the velocity twist of the rigid body
in its local coordinate frame [42], where se(3) is the Lie
algebra associated with the Lie group SE(3). Ut is completely
described in terms of three parameters vt , κt , and τt . In Sec. V,
we will use the motion parameters ut = [vt ,κt ,τt ]

T as the basis
for generating the desired curvature and torsion constrained
ribbons in 3D space.

By definition, Ut can be decomposed into the instantaneous
linear vt and angular wt velocities in the local coordinate frame
of the body as [42]

Ut =

[
[wt ]× vt

0 0

]
, (6)



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 5

Larger κ, Smaller κ,Constant κ,

t
b

nn

bt

Larger vSmaller vConstant v

Fig. 4. Ribbons generated by sweeping a rigid body (cuboid) along a circular
arc shown as a dashed line. (Left) The ribbon is oriented along the binormal
vector b pointing into the page. If the rigid body moves only along the tangent
vector, each channel along the ribbon has a constant curvature κ , torsion, and
length, which equals the curvature, torsion (zero in this case), and length of
the circular arc. (Right) The ribbon lies in the plane of the page. If the rigid
body moves along the normal vector n, each channel along the ribbon has
a different curvature, torsional value, and length, which makes the planning
problem much harder.

where wt = [vtτt , 0, vtκt ]
T , vt = [vt , 0, 0]T , and the notation

[·]× stands for a 3×3 skew-symmetric matrix.
Note that the above kinematic model is subject to nonholo-

nomic constraints. Informally, this implies that since the rigid
body only moves along the tangent vector tt and does not
undergo any instantaneous rotation about the normal vector nt ,
the curvature and torsion stay constant along the width of the
ribbon. Hence, to generate a curvature and torsion constrained
ribbon, it suffices to plan motions of a rigid body describing
the cross-section of the ribbon along a single spatial curve,
such that the cross-section is oriented along the binormal
vector to the curve, as shown in Fig. 4. If we consider alternate
kinematic models where the rigid body might undergo motion
along the normal vector nt , different channels along the ribbon
would have different curvatures, torsional values, and lengths.
This makes the planning problem harder because it is difficult
to impose separate constraints on the curvature and torsion of
individual channels in the ribbon.

When the velocity twist Ut is held constant over time
interval of duration δ , the differential motion model given by
Eq. (5) can be explicitly integrated as

Xt+δ = Xt exp(δUt) (7)

where exp : se(3) → SE(3) is the exponential operator, for
which an analytical expression exists and can be evaluated in
closed-form [42].

IV. PROBLEM DEFINITION

We consider the problem of generating a set R =
{r1, . . . ,rn} of n collision-free ribbons within an implant that
reach candidate dose dwell segments proximal to tumors and
are curvature and torsion constrained (Fig. 1). We are provided
the following inputs:
• Description of the 3D external geometry of the implant I

as a triangle mesh.
• Description of the geometry of the entry region E at the

base of the implant.
• Description of the geometry of external cancerous tumors

C = {C1, . . . ,Cm}.
• Set of n poses D = {X1, . . . ,Xn} that describe the 3D po-

sitions and orientations of groups of dose dwell segments
{d1, . . . ,dn} corresponding to each ribbon. The poses of

the dwell segments are computed such that sufficient
coverage of the tumors can be achieved.

• Set O of other obstacles (voids or forbidden regions)
within the implant.

• Channel width w.
• Maximum limits on speed v̄, instantaneous curvature κ̄ ,

cumulative curvature κ̄c, instantaneous torsion τ̄ , and
cumulative torsion τ̄c. These values are ascertained based
on the flexibility of the catheters used and the dimensions
of the radioactive source that is carried by the catheters.

For planning purposes, we assume that each ribbon ri, 1≤
i≤ n, is discretized into a set of T i time steps, each of constant
duration δ . From here on, we assume that time is discretized
and the configuration of the ith ribbon at time step t is specified
by the pose X i

t =
[

Ri
t pi

t
0 1

]
of a rigid body describing the cross-

section of the ribbon for 0 ≤ t ≤ T i. We further assume that
the twist U i

t , described in terms of motion parameters ui
t =

[vi
t ,κ

i
t ,τ

i
t ]

T (Eq. (6)), remains constant for the duration of the
step t for 0≤ t < T i.

For sake of conciseness, we introduce the notation X i =
{X i

t : 0≤ t ≤ T i} to denote the set of all poses, and U i = {ui
t :

0 ≤ t < T i} to denote the set of all control inputs for ribbon
ri. The entire ribbon ri can be parameterized as [X i,U i], and
can be generated by integrating the constant twist between
subsequent time steps.

The planning objective can be formally stated as: Generate
the set R = {r1, . . . ,rn} of ribbons, such that ∀ ri = [X i,U i],
the following constraints are satisfied:
• X i

0 = X i: The initial pose is constrained to be the pose of
the ith dose target.

• X i
T i ∈ E: The cross-section of the ribbon at final time

step T i lies within the entry region to permit insertion of
catheters.

• X i
t+1 = X i

t exp(δU i
t ): The poses at consecutive time steps

are related according to the kinematics model given by
Eq. (7).

• (ri ∩ I = /0) ∧ (ri ∩O = /0): Ribbon ri does not collide
with the implant boundary I and does not collide with
other obstacles O in the environment.

• ri ∩ r j = /0, 1 ≤ j ≤ n, j 6= i: All ribbons are mutually
collision-free.

• (|κ i
t |< κ̄) ∧ (|τ i

t |< τ̄) for 0≤ t < T i: The instantaneous
curvature and torsion values are within their respective
bounds.

• (
∑T i−1

t=0 |δvi
tκ

i
t | < κ̄c) ∧ (

∑T i−1
t=0 |δvi

tτ
i
t | < τ̄c): The cu-

mulative curvature and torsion along the ribbon is re-
spectively constrained.

In addition, for practical applications, it is desirable to
minimize the cumulative curvature and torsion along the length
of each ribbon. Formally, given user supplied weights ακ and
ατ , we wish to minimize the following objective for each
ribbon ri:

C(U i) = ακ

T i−1∑
t=0

(δvi
tκ

i
t )

2 +ατ

T i−1∑
t=0

(δvi
tτ

i
t )

2, (8)

which is equivalent to minimizing the energy or rotational
strain along a curve [41].
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Algorithm 1 R← ribbon generation(I,E,D,O,w, v̄, κ̄, κ̄c, τ̄, τ̄c)

1: R = /0
2: for all di ∈D do . Process dose dwell segments {d1, . . . ,dn} sequentially
3: T ← /0 . Initialize RRT tree
4: T ← add vertex(X i) . Add pose X i as root node
5: repeat
6: p← random point(I,O,R,E) . Sample collision-free point in R3

7: X ← nearest neighbor(p,T ) . Reachability-guided neighbor search [53]
8: u← control sampling(X ,p, v̄, κ̄, τ̄) . Sampling for best control [v,κ,τ]T

9: X ′← integrate twist(X ,u,δ ) . Integrate constant twist using Eq. (7)
10: if feasible(X ′, κ̄c, τ̄c)∧

collision free(X ,X ′, I,O,R) then . Check feasibility of the edge
11: T ← add vertex(X ′) . Add pose to tree
12: T ← add edge(X ,X ′) . Add edge to tree
13: end if
14: until (X ′ ∈ E)∨max iterations reached . Repeat till entry region reached
15: ri← generate ribbon(T ,X ′,w) . Generate ribbon from X i to X ′

16: R←R∪ ri . Add ribbon to set R
17: end for
18: return R

V. APPROACH

In this section, we describe our two stage planning ap-
proach. In the first stage, we use a sampling-based rapidly-
exploring random trees (RRT) planner that sequentially ex-
plores the free space in the environment to compute fea-
sible candidate ribbons. These candidate ribbons are then
simultaneously locally optimized using sequential quadratic
programming (SQP) to minimize the cumulative curvature and
torsion along the length of each ribbon.

A. Rapidly-exploring Random Trees (RRT)

In the first stage, we use a customized sampling-based RRT
planner [34] to plan motions of the rigid body according to
the nonholonomic kinematic model described in Sec. III. We
sequentially generate a feasible ribbon corresponding to each
dwell segment group di, 1≤ i≤ n in D using the RRT planner.
We note that it is also possible to simultaneously plan for all
the dose segments but in our experiments, we found that doing
so failed to find feasible solutions in the kind of constrained
environments considered in this work. In the second stage,
however, we jointly optimize over all ribbons.

Our customized RRT algorithm is summarized in Algorithm
IV. Starting from each pose X i, we iteratively grow a tree T
in the pose space of 3D positions and orientations that grows
towards the entry region E subject to constraints (Sec. IV). A
node is iteratively added to the tree as follows. First, a point
p ∈ R3 is randomly sampled from the implant volume such
that it does not collide with obstacles O or other ribbons R.
As opposed to directly sampling a pose, this strategy has been
shown to work better for nonholonomic systems such as the
ribbon and bevel-tipped steerable needles [44]. We also bias
the sampling towards the entry region to ensure progress [34].
In our experiments, 5% of all random samples were drawn
from the entry region to ensure progress.

Given p, we search for a node X in the tree that is nearest to
p according to a reachability-guided distance measure, which
accounts for the nonholonomic constraints on the kinematic
motion model of the ribbon. This strategy has been shown to
work well in practice [44], [53]. The ribbon has a maximum
instantaneous curvature κ̄ and not all points will be reachable
from a given pose. The reachable set from a pose X =

[
RX pX

0 1

]
consists of all points that can be connected to pX by a circular
arc that has a radius r ≥ 1/κ̄ and is tangent to the tangent tX

of the local coordinate frame. We then define the distance
metric as the length of such a circular arc connecting p and
X if p is in the reachable set of X , and infinity otherwise.
This strategy restricts the search domain to only those nodes
that are within the reachable set of the nearest node (X), thus
increasing the likelihood of coverage of the state space. Since
the rigid body motion is only constrained along the tangent
vector, the reachability-guided distance measure only depends
on the speed vt and curvature κt of the curve (Eq. 3a), and is
not dependent on the torsion τt .

The node X is then expanded as follows. We randomly
sample control inputs u= [v,κ,τ]T in the ranges [0, v̄], [−κ̄, κ̄],
and [−τ̄, τ̄], respectively. We select the best set of controls u
that gets closest to p using the Euclidean distance metric [64].
Let X ′ be the new pose obtained by integrating the controls
starting from pose X (Eq. (7)). We then check if X ′ is feasible,
i.e., it does not violate the cumulative curvature κ̄c and torsion
τ̄c constraints. This is easy to check by storing the cumulative
curvature and torsion values at each node in the tree as it
is grown. If feasible, we then check if the constant twist
trajectory between X and X ′ does not collide with the implant
boundary I, obstacles O, and the existing set of ribbons R. If
collision-free, we add X ′ and the edge from X to X ′ to the tree
T . If X ′ lies within the entry region, we stop growing the tree
and compute a plan by traversing the tree T starting backwards
from X ′ till the root node is reached. Given this plan, we
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(a) RRT

(b) Local optimization

Fig. 5. No obstacle scenario: Ribbons generated by (a) the RRT planner and
(b) the local optimization method. The RRT planner uses random sampling of
control inputs, which leads to unnecessary twists and turns in the generated
ribbon. The local optimization is able to compute an optimal ribbon with zero
curvature and torsion.

generate the entire ribbon ri by integrating the sequence of
controls along each edge of the plan. This ribbon ri is added
to the set of existing ribbons R.

We note that any sampling-based motion planner, including
our method, cannot guarantee that a globally optimal solution
will be found in a finite-time interval. Planners like RRT* [31]
can compute optimal motion plans as computation time is
allowed to increase, but require solving a two-point boundary
value problem, which is very challenging for a nonholonomic
system such as one considered in this work. Recently, Li et
al. [35] and Xie et al. [63] have proposed planners that are
asymptotically optimal for kinodynamic systems but it is not
clear if they will be able to extend to our application and this
is a topic for future research.

It is well known that randomized planners compute sub-
optimal, non-smooth plans [34]. We illustrate this in a scenario
with no obstacles in Fig. 5. The RRT planner computes a
feasible solution to the entry region but the solution is clearly
sub-optimal, with unnecessary twists and turns (Fig. 5(a)). We
also note that the RRT planner does not optimize the objective
stated in Eq. (8)). As is standard practice, we further locally
optimize the RRT solution using a local optimization proce-
dure outlined below. In the scenario with no obstacles, the
local optimization improves the RRT initialization to a straight
ribbon with zero curvature and torsion, as is expected (Fig.
5(b)). However, we note that the nonholonomic kinematics
and planning in the pose space makes it difficult to employ
standard smoothing heuristics suggested in the literature [34].

B. Local Optimization

In this stage, we simultaneously optimize the cumulative
curvature and torsion along all ribbons in the set R of feasible
ribbons generated by the RRT planner. Each ribbon ri ∈R is
parameterized as a sequence of poses and controls as [X i,U i]

and has T i time steps. We formulate the optimization problem
using the objective and constraints described in Sec. IV as:

min
X i,U i

1≤i≤n

n∑
i=1

C(U i), subject to constraints. (9)

Objective and constraints: The optimization problem
stated above has a quadratic objective (Eq. (8)), which is well
suited for optimization. However, the constraints are nonlinear.
These constraints are converted into the standard equality and
inequality constraints for optimization as described below:
• Constraints already expressed in standard form: X i

0 = X i,
(|κ i

t |< κ̄), and (|τ i
t |< τ̄).

• Non-convex constraints in standard form include: X i
t+1 =

X i
t exp(δU i

t ),∑T i−1
t=0 |δvi

tκ
i
t |< κ̄c, and

∑T i−1
t=0 |δvi

tτ
i
t |< τ̄c

• In this work, the entry region E is defined as a convex
region. We use a bounding circle or rectangle depending
on the scenario. The constraint X i

T i ∈E is then formulated
as a nonlinear inequality constraint based on whether the
ribbon cross-section at time step T i lies within the bounds
of E.

• The collision avoidance constraints (ri∩ I = /0) and (ri∩
O = /0) are encoded as nonlinear inequality constraints
sd(X i

t ,X
i
t+1, I) > 0 and sd(X i

t ,X
i
t+1,O) > 0, respectively,

for 0 ≤ t < T i,1 ≤ i ≤ n. Here, sd denotes the signed
distance. Similarly, the constraint ri ∩ r j = /0 is encoded
as sd(X i

t ,X
i
t+1,X

j
t ,X

j
t+1)> 0 for 1≤ j≤ n, j 6= i. We refer

the reader to Schulman et al. [50] for details on how to
efficiently compute the signed distance between convex
objects and linearize such constraints.

Optimization method: We solve this constrained nonlinear
optimization problem via sequential quadratic programming
(SQP), where we repeatedly construct a quadratic program
(QP) that locally approximates the original problem around
the current solution y = {X i,U i},1 ≤ i ≤ n. In particular, we
use the `1-SQP method proposed in [43]. This method has
been successfully used for robot motion planning in a variety
of contexts [19], [50] and we include a brief description below
for completeness.

Two key ingredients of a sequential convex optimization
algorithm are: (1) a method for constraining the step to be
small, so the solution vector remains within the region where
the approximations are valid; (2) a strategy for turning the
infeasible constraints into penalties, which eventually drives
all of the constraint violations to zero. For (1), we use a trust
region modeled as a box constraint around the current iterate.
For (2) we use `1 penalties: each inequality constraint gi(y)≤ 0
becomes the penalty |gi(y)|+, where |y|+ = max(y,0); each
equality constraint hi(y) = 0 becomes the absolute value
penalty |hi(y)|. In both cases, the penalty is multiplied by
some coefficient µ , which is sequentially increased, usually by
multiplying by a constant scaling factor at each step, during
the optimization to drive constraint violations to zero. Note
that `1 penalties are non-differentiable but convex, and convex
optimization algorithms can efficiently minimize them.

In our formulation, the objective is directly expressed in
the quadratic form. However, the constraints are nonlinear and
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have to be linearized for inclusion in the QP. The QP is then
solved and we compute a step based on a merit function [43]
to ensure that progress is made on the original problem. To
satisfy constraints up to a tolerance, we use `1 penalties that
are progressively increased over the SQP iterations.

The optimization problem outlined above is, however, de-
scribed directly over the set of poses X . One could use a
global parameterization of the rotation group, such as axis-
angle coordinates or Euler angles. The drawback of those
parameterizations is that they distort the geometry—for exam-
ple, consider how a map of the world is distorted around the
poles. This distortion can severely slow down an optimization
algorithm, by reducing the neighborhood where local (first and
second-order) approximations are good [47].

In this work, we follow the approach of Saccon et al. [47]
and Duan et al. [19] to generalize SQP to the case where
the domain is a differentiable manifold such as the SE(3)
Lie group rather than Rn by considering a local coordinate
parameterization of the manifold [47]. This parameterization is
given by the Lie algebra se(3), which is defined as the tangent
vector space at the identity of SE(3). The SE(3) group and
se(3) algebra are related via the exponential and log maps,
exp : se(3)→ SE(3) and log : SE(3)→ se(3) [42]. The local
neighborhood of a nominal pose X ∈ SE(3) is then defined in
terms of the incremental twist x̄ ∈R6 using the exp map [42].
Given a vector x̄ =

[ p̄
r̄
]
∈ R6 that represents the incremental

twist, the corresponding Lie algebra element is given by the
mapping ∧ : R6 → se(3) as x̄∧ =

[
[r̄] p̄
0T

3 0

]
, where the notation

[r̄] for the vector r̄ = [r̄x r̄y r̄z]
T ∈ R3 is the 3× 3 skew-

symmetric matrix. Intuitively, r̄ represents the incremental
rotation and p̄ represents the incremental translation to be
applied to a nominal pose. The inverse is defined by the
operator ∨ : se(3) → R6 to recover x̄ given a Lie algebra

element, i.e.,
[
[r̄] p̄
0T

3 0

]∨
= x̄.

We then construct and solve each QP in terms of the
increments to the previous solution. At each SQP iteration,
the set of poses X i is updated based on the incremental twists
computed by solving the QP approximation. As an example,
consider the jth iteration of SQP and let X̄ ( j) = {x̄( j)

0 , . . . , x̄( j)
T }

be the sequence of incremental twists (step) computed by
solving the convex subproblem. Given a trajectory consisting
of a sequence of nominal poses X̂ ( j) = {X̂ ( j)

0 , . . . , X̂ ( j)
T }, the

subsequent sequence of poses is obtained by applying X̄ ( j)

as X̂ ( j+1) = {exp(x̄( j)
0
∧) · X̂ ( j)

0 , . . . ,exp(x̄( j)
T
∧) · X̂ ( j)

T }, where
∧ : R6→ se(3) is the wedge operator that maps a twist vector
in R6 to the se(3) Lie algebra [42]. We refer the reader to
[19], [47] for additional details.

Simultaneous versus sequential optimization: Duan et al.
[19] propose a sequential optimization strategy for optimizing
the generated channels. A sequential strategy optimizes the
ribbons one at a time while treating all the other ribbons as ob-
stacles for formulating the collision avoidance constraints. The
optimization problem involves a lesser number of variables and
collision avoidance constraints in the optimization problem.
However, in our experiments, we found that the sequential
strategy is unable to optimize the objective when multiple
ribbons are considered because the ribbons are processed in

a chosen order (Fig. 7(b)). In our experiments, the sequential
optimization strategy also fails to generate a feasible set of
ribbons when the environment is very spatially constrained,
such as shown in Fig. 1(b). The simultaneous optimization
strategy is more computationally expensive since it involves a
larger number of variables in the optimization formulation and
collision avoidance constraints. However, it is able to resolve
conflicts by jointly optimizing over all the ribbons (Fig. 7(c)).

We note that a similar tradeoff occurs in multi-robot motion
planning problems where the sequential strategy corresponds
to prioritized motion planning for multiple robots [4], [58]
and the simultaneous optimization strategy corresponds to
centralized multi-robot motion planning [34], [48]. Planning
for multiple ribbons is also an instance of the multi-robot
motion planning problem with additional kinematic motion
constraints and curvature and torsion constraints.

VI. EXPERIMENTS

We consider three planning scenarios to highlight the merits
and demerits of the RRT planner and the local optimization
method. In each of these scenarios, we consider a box-shaped
implant volume. The objective is to generate a ribbon from
a specified target configuration to the entry region, which is
defined by one of the faces of the box.

No obstacle scenario: In the first scenario, as shown in
Fig. 5, we do not consider any obstacles. The RRT planner
generates a ribbon with unnecessary twists and turns as a result
of the randomized nature of the algorithm (Fig. 5(a)). The local
optimization method is able to optimize the ribbon to generate
one with zero curvature and torsion (Fig. 5(b)).

Two walls scenario: In the second scenario, as shown in
Fig. 6, we consider two box-shaped obstacles that block the
straight line path from the target configuration to the entry
region. If we use local optimization in isolation with a naı̈ve
straight line initialization for the ribbon, the optimization is
unable to resolve collisions with the two obstacles (Fig. 6(b)).
The RRT planner is able to resolve collisions but generates
a sub-optimal ribbon (Fig. 6(a)). However, applying local
optimization to the RRT-generated ribbon generates a high
quality ribbon that is able to avoid collisions with obstacles
within the environment (Fig. 6(c)).

Multiple ribbon scenario: In the third scenario, as shown
in Fig. 7, we consider an empty box-shaped implant volume
where the objective is to reach the entry region corresponding
to the face of the box. The RRT planner is used to sequentially
generate mutually collision-free ribbons, as shown in Fig.
7(a). In this sequential strategy, the planner treats previously
generated ribbons as obstacles. The generated set of ribbons
is sub-optimal in terms of the curvature and torsion along
the length of the ribbons, which is further optimized using
local optimization. If we use a sequential optimization strategy,
we optimize each ribbon one at a time but the solution is
dependent on the order in which the ribbons are optimized and
we end up with a sub-optimal set of ribbons with unnecessary
changes in curvature and torsion, as shown in Fig. 7(b). Our
simultaneous optimization strategy jointly optimizes over all
the ribbons at once. The joint optimization, although more



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 9

(a) RRT (b) Local optimization (c) RRT + Local optimization

Fig. 6. Two walls scenario: Two walls are positioned such that a direct path to the entry region is blocked. (a) The RRT planner explores the free space to
find a sub-optimal ribbon. (b) Local optimization fails to find a feasible solution starting from an infeasible, straight line initialization to the entry region. (c)
The RRT generated ribbon is provided as initialization to the local optimization, to generate a ribbon that minimizes curvature and has zero torsion.

(a) RRT (b) Sequential optimization (c) Simultaneous optimization

Fig. 7. Multiple ribbon scenario: (a) We use the RRT planner to sequentially generate mutually collision-free ribbons that reach the entry region. (b)
Sequential optimization locally optimizes the curvature and torsion along each ribbon one at a time and considers all the other ribbons as potential obstacles
during the optimization. The optimization problem involves a lesser number of variables but the solution is highly dependent on the order in which the ribbons
are optimized. In this case, we end up with a sub-optimal set of ribbons with unnecessary changes in curvature and torsion. (c) The simultaneous optimization
strategy jointly optimizes over all the ribbons at once. The optimization problem involves a larger number of variables and is computationally expensive to
solve but the joint optimization is able to optimize the curvature and torsion along all the ribbons to zero.

computationally expensive, does not suffer from the problem
of sequential ordering and successfully optimizes the curvature
and torsion along all the ribbons to zero, as shown in Fig. 7(c).

VII. DESIGNING 3D IMPLANTS FOR INTRACAVITARY
BRACHYTHERAPY

We considered a scenario where a 3D printed implant is
used for treatment of OB/GYN tumors, as shown in Fig. 8. The
implant was modeled as a cylinder of height 7 cm and radius
2.5 cm, with an attached hemisphere with radius 2.5 cm. The
dimensions of the implant was designed based on dimensions
reported by Garg et al. [24]. We considered 3 tumors that
are targeted for intracavitary brachytherapy treatment. We
placed 6 groups of candidate dose dwell segments that are
placed proximal to the tumors within the implant volume
and oriented tangentially to maximize dose distribution to the
tumor volumes. The circular entry region is the base of the
implant. The objective is to generate mutually collision-free,
curvature and torsion constrained ribbons within the implant
volume that reach the candidate dose dwell segments.

Standard catheters used for brachytherapy are 1.65 mm –
2 mm [18] in diameter. In this scenario, we consider channels
of width w = 2.5 mm. We imposed a constraint on the
instantaneous curvature of κ̄ = 1cm−1 based on the maximum
allowable curvature reported by Garg et al. [24] for radioactive
sources that are 1 mm in diameter and 5 mm in length. We
also imposed a constraint on the instantaneous torsion of

τ̄ = 0.1 radians. We set maximum limits on the cumulative
curvature and torsion for each ribbon as κ̄c = π

2 and τ̄c = π

2
units, respectively. We also constrained the cross-section of
each ribbon at the respective final time steps to lie within the
specified entry region, which is the bottom face of the implant.

We implemented our planning approach in C++ and used
the Bullet collision checking library [15] for collision checking
queries. We chose Bullet because of the high-performance
signed distance implementations for convex-convex collision
checking. Fig. 8(a) shows the candidate ribbons computed
using the RRT planner. The candidate ribbons are mutually
collision-free but contain unnecessary changes in curvature
and torsion along the ribbons since the RRT planner does not
optimize the considered objective. Fig. 8(b) shows the results
of jointly optimizing the ribbons using the local optimization
approach. In practice, this optimized arrangement of channels
would be printed with support material and later dissolved to
compute the hollow internal channels within the implant.

Table I summarizes the computation time required to gener-
ate these ribbons using the RRT planner and local optimization
as we vary the number of channels per ribbon. The RRT
planner is faster since it generates these ribbons sequentially
while the local optimization jointly optimizes over all ribbons
and hence is computationally expensive. In this scenario, our
approach was not able to find a solution for greater than 6
channels per ribbon due to the limited free space within the
implant volume.
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(a)

Not covered

(b)

Not covered

(c)

Fig. 9. Comparison with single channel arrangements: We compare our approach to generating individual channels for groups of candidate dwell dose
segments following the approach of Garg et al. [24]. (a) Even with 3 dwell segments per group (18 channels in all) in an effort to cover all tumors (shown
in red), the implant volume is occupied with internal channels. The planner is unable to generate single channels for greater than 3 channels per group. This
leads to less effective coverage of the tumor volume in terms of dose distribution. (b,c) The tumors are rendered as translucent to visualize dwell segments
that are not covered by the planner. (b) The quality of the sequential RRT planning process is dependent on the order in which dwell positions are processed
by the planner. In this situation, we processed dwell segments in decreasing distance to the entry region. The planner is unable to find feasible channels that
visit dwell segments closer to the entry region since the channels computed earlier in the planning process impede the generation of subsequent channels. (c)
In this situation, we processed dwell segments in increasing distance to the entry region. The planner is able to successfully generate channels for the dwell
segments that are closer but is unable to compute feasible channels for dwell segments that are farthest from the entry region as there is insufficient free space
to generate subsequent channels.

Num. channels 1 2 3 4 5 6
RRT time(s) 0.6 1.1 3.5 9.6 16.7 38.4
Opt. time(s) 53.7 81.9 143.5 247.3 313.9 397.1

TABLE I
PERFORMANCE OF OUR PLANNING APPROACH WITH DIFFERENT NUMBER
OF CHANNELS PER RIBBON. THE CUMULATIVE TIME IS THE SUM OF THE
RRT AND OPTIMIZATION TIMES. THE REPORTED TIMES FOR THE RRT
PLANNER ARE AVERAGED OVER 10 RUNS. ALL EXECUTION TIMES ARE

BASED ON EXPERIMENTS RUN ON A SINGLE 3.5 GHZ INTEL I7
PROCESSOR CORE.

A. Comparison with Single Channel Arrangements

We also compared the use of ribbon-like arrangements
versus generating single channels for groups of dose dwell
segments following the approach of Garg et al. [24] that uses
an RRT planner to generate curvature constrained channels by
processing the dwell segments sequentially. The channels also
have to be mutually collision-free and this leads to ineffective
utilization of space within the implant volume as the number
of channels increases. The quality of the solution is also
highly dependent on the order in which the dwell segments
are processed by the planner.

The ability to deliver radiation doses depends on the ar-
rangement of dwell segments and their proximity to tumors.
Fig. 9(a) shows an example arrangement of individual channels
in groups of 3 dwell segments. Here, the objective was to
compute channels that would attempt to reach all the tumors.
However, the RRT planner is unable to compute feasible
solutions since the channels occupy the entire volume within
the implant, thus preventing the planner from adding additional
channels to the implant. This results in less effective coverage

of the tumors, as described in Sec. VII-B.
The solution quality is dependent on the order in which

the dwell segments are processed during planning. Fig. 9(b)
shows an example arrangement of individual channels applied
to the original placement of dwell segments considered in
Fig. 8(b). In this situation, we processed dwell segments in
the order of decreasing distance to the entry region, i.e., we
first processed dwell segments that are farthest from the entry
region. The planner is unable to find feasible channels that visit
dwell segments closer to the entry region since the channels
computed earlier in the planning process act as obstacles and
impede the generation of subsequent channels.

Fig. 9(c) shows an example arrangement of individual
channels where we processed dwell segments in the order of
increasing distance to the entry region, i.e., we first processed
dwell segments that are closest to the entry region. In this
situation, the planner is able to successfully generate channels
for the dwell segments that are closer but is unable to compute
feasible channels for dwell segments that are farthest from
the entry region as there is insufficient free space to generate
subsequent channels.

B. Coverage Quality Metric

Each dose dwell segment di, i = 1, . . . ,n is divided into
dwell points {dP} that are spaced approximately 5 mm apart,
which corresponds to the dimensions of the source. Let the
set of reachable dwell positions be denoted as P = {dP}. The
radiation dosage from the source follows an inverse square
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(a) RRT

(b) RRT + Local optimization

Fig. 8. We consider an implant volume modeled as a cylinder and attached
hemisphere. The objective is to generate 6 mutually collision-free ribbons
that reach groups of candidate dwell segment groups proximally located and
oriented tangentially to the tumors. (a) The RRT planner is able to sequentially
plan for each dwell segment group to generate collision-free ribbons that have
unnecessary twists. (b) The candidate ribbons are jointly optimized locally to
minimize the curvature and torsion along the length of each ribbon.

law i.e., the radiation decay is inversely proportional to the
squared of the distance to the source [10], [27].

The ability to deliver radiation doses depends on the
arrangement of potential dwell points and their proximity
to tumors. We measure the quality of an implant by the
percentage of tumor volume that is covered by the set of dwell
points, where coverage is a function of the distance between a
dwell point (source) and a tumor point (target). Higher quality
reduces the maximum dwell time needed to treat tumors and
the potential for hot spots that can harm healthy tissue.

To compare implants and channels for a given set of
tumors C, we considered the set of reachable dwell positions
P = {dP} and how thoroughly they cover the set of tumors.
We discretized the set of tumors into a set of evenly spaced
points C = {dC} defined on a regular grid. We quantified the
proximity of a dwell position dP from a tumor point dC with
the coverage radius ε such that: if dP lies within a ball of
radius ε centered at dC, then dP is said to cover dC. Hence
the cover of dC is the set as given by Garg et al. [24] as

coverage(dC,ε) = {dP : ‖dP−dC‖2 ≤ ε, dP ∈ P}. (10)

Reaching 100% coverage with a smaller radiation radius and
more dwell positions can reduce occurrence of radiation hot
spots and increase dose conformation to the tumor geometry
to spare healthy tissue. A smaller coverage radius parameter
results in lower dose to healthy organs while supplying suf-

(a) RRT

(b) RRT + Local optimization

Fig. 10. Limitation: Completeness: We consider a narrow passage scenario.
The target is oriented so that a feasible ribbon would have to simultaneously
twist and turn and make its way through a narrow passage. (a) Feasible
solution found by the RRT planner. (b) The RRT solution is further locally op-
timized to minimize curvature and torsion. Without the feasible initialization,
the local optimization is unable to find a feasible solution. The narrow passage
is a known problem for sampling-based planners like RRT. For narrower
passages than the one considered here, our approach is unable to find a
solution even though a feasible solution exists for a passage that is just wider
than the ribbon width.

ficient radiation to the tumor volumes. Hence a higher tumor
coverage with small ε is preferred for brachytherapy treatment.

The use of single channels limits the number of reachable
dose dwell segments. This affects the coverage of tumor
volume that can receive radiation, thus limiting the treatment
effectiveness. In the scenario considered above, we found
that dwell positions generated with ribbon-like channel ar-
rangements (Fig. 8(b)) achieved 100% coverage of the tumor
volume for ε = 2.1 cm. In contrast, the coverage achieved
for single channels (Fig. 9(a)) for ε = 2.1 cm is only 54%.
It is important to achieve 100% coverage to destroy all
cancerous tissue to prevent cancer recurrence. Using ribbon-
like arrangements allows us to achieve this coverage while
minimizing damage to surrounding healthy tissue.

VIII. LIMITATIONS

In this section, we consider the limitations of our planning
approach through illustrative examples. We consider the fol-
lowing two scenarios:

Limitation: Completeness: In this scenario, as shown in
Fig. 10, we consider two box-shaped obstacles that only permit
passage to the entry region via a narrow passage. The target
orientation is specified such that the ribbon would have to
simultaneously twist and turn to be able to traverse the narrow
passage. Narrow passages are a known problem for sampling-
based planners like RRT because it is difficult to generate
and connect to collision-free samples in the narrow passage.
This problem becomes especially difficult when the kinematic
model is nonholonomic. The RRT planner is able to resolve
collisions after repeated attempts (8 in our case) to generate a
sub-optimal ribbon (Fig. 10(a)). Local optimization in isolation
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(a) Initialization in different homotopy classes (Left) RRT initialization.
(Right) Local optimization.

(b) Initialization in same homotopy class (Left) RRT initialization. (Right)
Local optimization.

Fig. 11. Limitation: Two stage planning: We consider a scenario with a cylindrical obstacle that spans the extent of the bounding box, thus dividing the
free space into two distinct homotopy classes. (a) RRT solution in which the two ribbons are in different homotopy classes. Local optimization succeeds in
optimizing the curvature and torsion in the two ribbons. (b) RRT solution in which the two plans are in the same homotopy class. The solution obtained using
local optimization also lies in the same homotopy class, and is sub-optimal because of larger cumulative curvature in the ribbons.

is unable to find a feasible solution. However, applying local
optimization to the RRT-generated ribbon is able to locally
optimize the solution (Fig. 10(b)).

We note that for passages narrower than the one considered
here, our approach is unable to find a feasible solution even
though one exists for passages that are just wider than the
ribbon width. Even though the RRT planner is theoretically
probabilistically complete [34], i.e., it is guaranteed to find a
solution if one exists, we cannot guarantee that this would be
true in practice for our application.

Limitation: Two stage planning: In this scenario, we
consider a scenario with a cylindrical obstacle that spans the
extent of the bounding box, thus dividing the free space into
two distinct homotopy classes. We also note that the ribbons
themselves also partition the free space into distinct homotopy
classes since they are required to be mutually collision-free.

If the RRT planner finds a solution in which the two ribbons
are in different homotopy classes, the local optimization is
successful in minimizing the curvature and torsion along the
ribbons to obtain the solution that would be expected in such a
scenario (as shown in Fig. 11(a)). However, if the RRT planner
finds a solution in which the ribbons are in the same homotopy
class, the local optimization subsequently finds a sub-optimal
solution with larger cumulative curvatures along both ribbons
(as shown in Fig. 11(b)). This is a well known limitation of
gradient-based trajectory optimization methods [34] and is also
a limitation of our approach. This shows that the topology of
the RRT solution that is used as initialization has an effect
on the quality of the final solution. Recently, Bhattacharya et
al. [7] and Pokorny et al. [46] have shown that it is possible
to classify and compute paths in distinct homotopy classes.
Extending these concepts to nonholonomic motion planning
and our approach is a promising avenue for future research.

IX. CONCLUSION

In this work, we posed the problem of planning curvature
and torsion constrained ribbons that avoid collisions with
obstacles in 3D environments. We showed that this problem
is equivalent to planning motions for a rigid body along a
spatial curve, such that the rigid body is oriented along the unit
binormal to the curve defined according to the Frenet-Serret
frame. We used a combination of sequential sampling-based
(RRT) planning and simultaneous local optimization (SQP) to
compute high quality ribbons for designing channels within
3D printed implants for intracavitary brachytherapy.

This opens up several avenues for future work. We plan
to extend this work to automatically compute dose dwell
segments that are proximally located with respect to the
external tumors. We plan to test our planning approach to
design and print 3D implants and evaluate them in clinical
brachytherapy trials. Alternate arrangements of channels will
also be considered. Given an set of dose dwell segments, one
could also first plan individual channels starting from the dose
swell segments into a ribbon shape, which is a challenging
planning problem. One can then plan a path of the ribbon to
the entry region (similar to routing of wires inside electrical
equipment). We envision that our approach will also be useful
for other applications such as routing ribbon-like arrangements
of cooling channels, wires and cables, and planning motions
for bevel-tipped steerable needles.
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