
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Directing Crowd Simulations
Using Navigation Fields

Sachin Patil,Jur van den Berg,Sean Curtis,Ming Lin,Dinesh Manocha

Abstract—We present a novel approach to direct and control virtual crowds using navigation fields. Our method guides one or more
agents towards desired goals based on guidance fields. The system allows the user to specify these fields by either sketching paths
directly in the scene via an intuitive authoring interface or by importing motion flow fields extracted from crowd video footage. We
propose a novel formulation to blend input guidance fields to create singularity-free, goal-directed navigation fields. Our method can
be easily combined with most current local collision-avoidance methods and we use two such methods as examples to highlight the
potential of our approach. We illustrate its performance on several simulation scenarios.

Index Terms—Multiagent systems, Animation, Virtual Reality

F

1 INTRODUCTION

Over the last few decades, advances in agent-based sys-
tems, cognitive modeling and AI have found widespread
use in simulating autonomous agents and virtual crowds
in computer games, training systems and animated fea-
ture films. In addition, multi-agent simulation systems
are also used for studying human and social behaviors
for architectural and urban design, training and emer-
gency evacuation simulations.

Most existing agent-based systems assume that each
agent is an independent decision making entity. Some
of the methods also focus on group-level behaviors and
complex rules for decision making. The problem with
these approaches is that interactions of an agent with
other agents or with the environment are often per-
formed at a local level and can sometimes result in unde-
sirable macroscopic behaviors. Due to the complex inter-
agent interactions and multi-agent collision avoidance, it
is often difficult to generate desired crowd movements
or motion patterns that follow the local rules.

In this work, we address the problem of directing the
flow of agents in a simulation and interactively control-
ling a simulation at runtime. Our approach is mainly
designed for goal-directed multi-agent systems, where
each agent has knowledge of the environment and a
desired goal position at each step of the simulation. The
goal position for each agent can be computed from a
higher-level objective and can also dynamically change
during the simulation.

• S. Patil, S. Curtis, M. Lin and D. Manocha are with the Department of
Computer Science, University of North Carolina at Chapel Hill
E-mail: {sachin,seanc,lin,dm}@cs.unc.edu

• J. van den Berg is with the Department of Electrical Engineering and
Computer Science, University of California at Berkeley
E-mail: berg@berkeley.edu

Main Results: We present an interactive algorithm to
direct and control crowd simulations. Our approach uses
user-specified guidance fields to direct the agents in a
simulation (Section 4). The user edits the simulation by
specifying guidance fields, that are either drawn by the
user or extracted from a video sequence. Based on these
inputs, we compute a unified, goal-directed, smooth
navigation field that avoids collisions with the obstacles
in the environment. The guidance fields can be edited
by a user to interactively control the trajectories of the
agents in an ongoing simulation, while guaranteeing that
their individual objectives are attained (Section 5). The
microscopic behaviors, such as local collision avoidance,
personal space and communication between individual
agents, are governed by the underlying agent-based
simulation algorithm (Section 6). Our approach is gen-
eral and applicable to a variety of existing agent-based
methods. We illustrate the usefulness of our approach in
the context of several simulation scenarios (Section 7).

As compared to prior approaches, our algorithm offers
the following benefits:

• Goal-directed navigation of multiple groups of het-
erogeneous agents using smooth navigation fields;

• Novel formulation for blending arbitrary user and
procedural inputs to create singularity-free naviga-
tion fields for global planning;

• Ease and simplicity to be combined with any exist-
ing local collision avoidance schemes;

• Interactive editing scheme that provides real-time
feedback to the user to direct and control crowd
simulations.

The overall approach can be useful from both artistic
and data-driven perspectives, as it allows the user to
interactively model some macroscopic phenomena and
group dynamics based on artistic input or actual crowd
footage.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

(a) (b) (c)
Fig. 1: Subway simulations: (a) An agent-based system causes congestion at the turnstiles. (b) The user specifies guidance
fields (shown in red and blue) for different groups of agents. (c) Our algorithm computes goal-directed navigation fields to
guide the agents towards their original goals.

2 PREVIOUS WORK

Simulating virtual crowds has been extensively studied
in several fields including computer graphics, robotics,
traffic engineering and social sciences. We refer the read-
ers to excellent surveys [1], [2].

Many existing approaches employ agent models, in
which each autonomous agent perceives its own state
and reacts to dynamic entities in its neighborhood.
LaValle [3] provides an excellent overview of global nav-
igation methods. Several methods have been proposed
for local collision avoidance, including the popular rule-
based flocking model [4], [5], the social forces model intro-
duced by Helbing et al. [6], cellular automata models [7]
or a velocity-obstacles based formulation [8], [9]. More
sophisticated variants account for motion dynamics [10],
sociological factors [11], psychological effects [12], [13],
situation-guided control [14] and cognitive and behav-
ioral models [15], [16], [17].

Macroscopic approaches directly attempt to govern the
global behavior of crowds by computing velocity fields
based on the environment description [18], [19], design-
ing velocity fields manually [20], [21], or by applying the
continuum theory for the flow of crowds to crowd simu-
lation [22]. Recently, several researchers have presented
data-driven methods for constructing group behavior
models based on real crowd video footage [23], [24],
[25], [26], [27], [28]. Extracting coherent flow information
from video for dense crowds is considered a challenging
problem and few solutions have been proposed [29].

Ulciny et al. [30] and Sung et al. [14] provide a user
with the ability to author and control crowd simulations
at run-time. Reynolds [5] and Jin et al. [21] choose user-
specified velocity fields to steer agents in a simulation.
Metoyer et al. [31] and Oshita et al. [32] suggest a
reactive path following scheme based on forces to direct
individual agent trajectories. Kwon et al. [33] and Taka-
hashi et al. [34] propose an interactive editing scheme
that allows the user to edit group locomotion and for-
mation patterns to generate high fidelity motions for
offline crowd simulations. Moreover, some commercial

animation systems [35], [36] allow the user to paint
simple, directional flow fields on the scene to direct the
flow of agents in a crowd. These prior approaches do
not provide rigorous guarantees (highlighted in Section
3.1) in terms of goal-directed navigation.

Prior work in the domain of computer graphics has
also focused on the use of user-specified vector fields
for directing texture synthesis [37], [38], [39] and fluid
simulations [40]. These methods allow the user to design
arbitrary vector fields over planar and polyhedral do-
mains. Our problem of designing vector fields for agent
navigation is different since the navigation fields have
to be goal-directed, free from singularities such as local
minima (except at the goals) and encode agent paths of
least effort to the goals.

3 DEFINITIONS AND BACKGROUND

In this section, we give an overview of guidance and
navigation fields and describe our overall approach for
directing crowd simulations.

3.1 Guidance and Navigation Fields

Our method relies on computing an underlying nav-
igation field over the free space in an environment,
which could be used for directing agents in a simulation.
LaValle [3] provides an excellent overview of methods
for computing navigation functions over discrete, as well
as continuous spaces. Since trajectories of the agents are
implicitly encoded in these fields, it is important that
they exhibit the following key characteristics:

• In order to guarantee that the agents eventually
reach their goals, the navigation field must be free
from local minima, except for the presence of sinks
at the specified goals.

• Agents should trace out paths of least effort (mini-
mum cost) to their goals [41].

• These fields should be almost smooth [42] and
should plan around static obstacles in the environ-
ment.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Fig. 2: A schematic overview of our method For every
distinct group of agents sharing a common objective, a goal-
directed navigation field is interactively computed. This is
used to drive individual agents at every simulation time-step.
The agents run a continuous cycle of sensing and acting (as
depicted by the right-hand box).

We define a navigation field N : R2 → S1, S1 = [0, 2π]/ ∼
(where ∼ is an equivalence relation with 0 ∼ 2π) as a
vector field that exhibits the above properties. Note that
the definition implies that the vectors of a navigation
field are unit vectors.

Our work differs from previous methods in that we
allow the user to arbitrarily create and edit such nav-
igation fields, while still preserving these properties.
To this end, we define a second vector field, called a
guidance field G : R2 → R2, in which the user inputs are
aggregated. We assume without loss of generality, that
the vectors of a guidance field have a magnitude less
than 1: ‖G(x)‖ < 1 for all x ∈ R2. A guidance field
is in general not a goal-directed field and may contain
local minima. We present an algorithm in Section 5.2 to
transform a guidance field into a navigation field that is
guaranteed to be free of local minima. Each time the user
specifies additional input, it is blended with the existing
guidance field, and interactively transformed into a new
navigation field.

3.2 Overview

Our approach can be used with any underlying goal-
directed agent-based simulation system. The goals may
be dynamically generated at each time step based on de-
composing a high-level objective. Given an environment
description with static and dynamic obstacles and agents
with specified goal positions, the task is to navigate each
of these agents to its goal position without any collisions
with the obstacles or other agents in the environment.

Our formulation is based on the two-level planning
framework that is common to many agent-based sys-
tems [43], [2]. Figure 2 provides a schematic overview
of our approach. At each simulation time-step, the pre-
ferred velocity of each agent is provided by the global
navigation method (goal-directed navigation fields in our

case). This is followed by a local collision avoidance phase
which computes a collision-free velocity for each agent.

Our method computes navigation fields for each distinct
group of agents based on the static description of the
environment, specified goal positions, and the guidance
field specified for that group of agents. These navigation
fields are goal-directed, almost smooth with no local
minima, and are used to guide the agents to their cor-
responding goals. The user can edit existing navigation
fields either globally or on an individual basis and these
edits are then composited with the existing guidance
fields to compute a new navigation field. We note that
the navigation fields are not recomputed in every time
step of the simulation, but only when the user specifies
additional input or when the goal position changes.

4 SPECIFICATION OF GUIDANCE FIELDS

This section outlines the various methods that can be
used to specify guidance fields using a sketch-based
interface by the user or indirectly through motion fields
extracted from an existing footage of real crowds. It
should be noted that there can be other modes of input
that might be used to specify guidance fields. The user
might also choose to specify the guidance field proce-
durally or use a vector field editing method (e.g. [38]
or [20]) to design them. It is also possible to specify
guidance fields from multiple input sources, which can
be blended together into one guidance field.

4.1 Sketch based Interface

We can use sketch based interface which allows the
user to edit the underlying guidance field by “painting”
vector fields onto the scene using freehand brush strokes
(similar to the method proposed in [44]). The skeleton
of the stroke is accepted as input using a mouse. We
compute a region of influence of a user-specified width
around the skeleton of the stroke. Depending on the
application, the user can either choose to draw constant
field strokes or the field could decay with the distance
to the curve (see Figure 3). Parameters such as the width
of the stroke and the rate of decay are specified by the
user and vary depending on the application.

4.2 Input from Video Footage

Data-driven crowd simulation has received considerable
attention in the recent years. Recently, [29] proposed a
method to robustly detect global motion patterns from
videos of crowded scenes (see Figure 5). Optical flow
methods are used to compute flow vectors in each
frame and then combined into a global motion field (see
Figure 5(d)). Given the motion flow field, typical motion
patterns are detected by clustering flow vectors using a

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

Fig. 3: Sketching interface for specifying gradients A
user drawn stroke is rasterized onto the regular grid and
a region of influence of user-specified width is constructed
around the skeleton of the stroke. The gradients along the
sketched curve are propagated to grid cells within this region.

(a) (b)

Fig. 4: Crosswalk Simulation: (a) Sketch-based guidance
fields to specify lane formation in the simulation; (b) Lane
formation generated by goal-directed navigation fields.

hierarchical clustering algorithm (see Figure 5(e)). These
motion patterns are specified as flow fields on a dis-
cretized grid. We use the same grid used for defining
the motion patterns as our simulation grid. These motion
patterns can then be transformed (translated, rotated and
scaled according to the simulated scene) and directly
imported into our system as a guidance field, or blended
with the existing guidance fields, to simulate the behav-
ior observed in real-life crowds. The effectiveness of this
approach is demonstrated in the results section.

4.3 Blending Multiple Inputs

Each source of input i gives a separate guidance field Gi.
In case there are multiple inputs, these guidance fields
are blended together to form one composite guidance field
G based on which a navigation field N is computed.
Guidance fields are blended by weighted average of
the vectors in the grid: G(X) =

∑
i wiGi(X) /

∑
i wi,

where wi is the weight of input i. The blend weights are
specified by the user during the editing process.

The user can edit the navigation fields at two levels.
Global edits correspond to the specification of macro-
scopic phenomena and group behaviors such as forma-
tion of lanes and vortices (see Figure 10). Global edits

(a) (b) (c)

(d) (e)

Fig. 5: Motion patterns detected in a video of a crosswalk in
Hong Kong. (a,b,c) Frames from the original video; (d) Global
motion flow field; (e) Two distinct motion patterns detected by
clustering (shown in blue and red).

(a) (b)

Fig. 6: Crosswalk Simulation: (a) Video-based motion
patterns from Figure 5(e) used as guidance fields; (b) Agent
motion generated by the navigation fields.

apply to the guidance fields of all groups of agents in
the simulation simultaneously. Edits at the individual
level are limited to editing the individual guidance fields
corresponding to each group of agents and they are used
for higher level specification of agent trajectories (see
Figure 9).

5 NAVIGATION FIELDS

In this section, we describe our approach to blend dif-
ferent inputs and compute the navigation field from
multiple guidance fields.

5.1 Discretization

Our choice of vector fields for global navigation is mo-
tivated by the fact that they span the entire free space
available and can be edited to suit user specification.
The processing and computation of guidance fields and
navigation fields requires a discretization of free space
in the environment. For simplicity, we use regular grids
with a vector stored in each cell X of the grid. A
regular grid also allows us to store information about the
environment as a discrete cost function, where the cost of
traversing each region depends on several factors such

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Fig. 7: Computing navigation fields (a) Computing the
path cost of cell X given the path costs at its two neighboring
cells A and B and a guidance field vector G(X).

as traversal time, safety risk or nature of the terrain. In
our case, we label each cell as either ‘free’ or ‘obstacle’
and we assume that the free cells form a 4-connected
component.

5.2 Computing Navigation Fields

A naı̈ve combination of blended guidance fields with
a goal-directed plan (generated by a global navigation
method such as roadmaps, visibility graphs or potential
fields) can result in ambiguities and cannot guarantee
that agents would reach their respective goals. This is
especially true when the guidance field specifies a flow
that opposes the preferred direction of an agent’s motion.

Computing a goal-directed navigation field N means
that there should be a path from each free (non-obstacle)
cell in the grid to (one of) the goal position(s). For this,
we use a variant of Dijkstra’s algorithm to propagate
costs across the grid, starting with zero costs associated
with the goal position(s). Storing the predecessor (i.e.
back-pointer) for each grid cell during the propagation
process yields a navigation field over the entire environ-
ment.

For the paths in the navigation field N, we consider
the guidance field G to be an extraneous factor that
assists or hinders the intended progress towards the
goal position(s). This means that the cost of traversing
through a cell in the grid is anisotropic; it depends on the
direction with which this cell is traversed with respect
to the vector stored in G.

The regular 4-connected grid can be considered as a
graph, where each grid cell constitutes a node in the
graph. Applying the traditional Dijkstra’s algorithm to
this grid results in “blocky” paths due to the limited
set of permitted transitions (only axis-aligned transi-
tions to neighboring grid cells), which gives undesir-
able behaviors. Therefore, our method is based on an
approach suggested in the robotics literature [45] that

uses an approximation to overcome this limitation and
computes smooth paths. We extend this method to allow
anisotropic cost functions.

The basic premise is that instead of choosing only from
the set of neighbors at every grid cell, one can transition
to any point in between the neighboring grid cells as
well. To simplify the computation, we assume that the
cost of any point between two neighboring cells is
assumed to be a linear combination of the computed
costs at the two cells.

For the sake of discussion, let us assume that X is the cell
at which the path cost T (X) needs to be evaluated and A
and B are its north and east neighbors, respectively, that
have already been marked (see Figure 7). Without loss
of generality, we associate unit costs of traversal to the
neighboring nodes A and B (in general, varying spatial
costs of traversal can be associated with the neighboring
nodes and this is specific to the simulation scenario).
Instead of limiting possible transitions to only one of
the neighboring cells, we assume that the optimal path
taken from X meets the line segment AB at a point C
lying between A and B (both inclusive). If the position
(α, 1 − α) of C on AB is parameterized by α, where
α ∈ [0, 1], then the path cost associated with point C
is assumed to be αT (A) + (1 − α)T (B). The length of
the transition from X to C is given by ‖(α, 1− α)‖. The
speed s with which we can traverse XC depends on the
guidance field vector G(X) at X . This scenario is similar
to an airplane trying to move with unit speed in the
presence of the wind blowing with velocity G(X). The
speed s is given by the intersection of the line through
XC and a unit circle centered at the point G(X) (see
Figure 7):

‖sa−G(X)‖ = 1, (1)

where a = (α,1−α)
‖(α,1−α)‖ is the direction of motion. As

‖G(X)‖ < 1, this equation always has a positive solu-
tion, which is given by:

s(X,a) = a·G(X)+
√

(a·G(X))2 −G(X)·G(X) + 1. (2)

Hence, the path cost T (X) at cell X is given as:

T (X) = αT (A)+(1−α)T (B)+‖(α, 1−α)‖ / s(X,a), (3)

and the navigation field vector N(X) at cell X is:

N(X) = a = (α, 1− α) / ‖(α, 1− α)‖. (4)

We seek to compute the value for the parameter α that
minimizes the path cost T (X) at cell X . This is given
by the solution to the equation dT (X)

dα = 0. The path cost
T (X) is then computed by plugging in the value of α in
Equation 3.

The path costs are propagated throughout the grid,
starting at the goal locations, in a Dijkstra-like manner.
At each instance of the computation, only two neigh-
boring cells, for which the path costs have already been
computed, are considered at a time for evaluating the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

path cost at a given cell. Keeping track of the direction
of the optimal path taken at each grid cell X yields a
smooth navigation vector field over the entire free space
in the environment.

We note that the anisotropic cost function as defined
above is non-monotonic, i.e. it is possible that the new
computed cost at the current cell is less than the cost of
(at most) one of its neighboring cells. This may result in
the cost at a cell being revised several times as the cell
cost tries to converge to its true value. In our system,
we allow the cost associated with a cell to be updated
only up to a certain limit, after which we no longer
process the cell. We observe that the convergence is fast
and an upper limit of 5 produces a reasonably smooth
navigation field in our benchmarks (see Figure 8(a)). In
case G(X) = 0 for all X , the navigation field gives the
shortest paths to the goal (see Figure 8(b)).

5.3 Analysis

We highlight certain properties of the navigation field
computed by our algorithm. Every grid cell whose cost
T has been computed, has at least one neighbor with
a lesser cost, except for the goal cells, from which the
propagation is initialized with cost 0. So, there are no
local minima in the navigation field, except for sinks at
the goals. A direct consequence is that the navigation
field always compute goal-directed paths. Given the fact
that the free space is one connected component in the
grid, the Dijkstra-algorithm will visit all the free cells
and computes their navigation field vectors. Because we
use an interpolation scheme to compute the path costs,
the algorithm gives almost smooth paths. We note that
grid cells next to sharp corners in obstacles may rely
on only one neighboring cell to compute its cost, which
can result in non-smoothness at these isolated points
(see Figure 8(b)). Overall the navigation field computed
by our algorithm has all the properties highlighted in
Section 3.1.

The problem of navigation in the presence of an
anisotropic guidance field belongs to a general class of
anisotropic cost-optimal trajectory problems [46], charac-
terized by the static Hamilton-Jacobi-Bellman equation:

max
a∈S1

{(−∇T (x) · a)s(x,a)} = 1, (5)

with s(x,a) as defined in Equation 2, and boundary con-
ditions T (x) = 0 for all goal locations x. This equation
is a necessary and sufficient condition for cost-optimal
paths under an anisotropic speed function s(x,a) that
depends on position x as well as direction a. In fact,
our algorithm for computing navigation fields computes
a discrete approximation of the solution of the given
equation. It should also be noted that if the speed
function s does not depend on the direction a, then
equation 5 reduces to the standard Eikonal equation [22].
We refer the reader to [46] for an elaborate analysis.

6 LOCAL COLLISION AVOIDANCE

Our method can be easily integrated into any multi-
agent simulation system by replacing the global naviga-
tion framework with navigation field based path plan-
ning. At each simulation time-step, the cell containing
the agent is determined. If N(X) be the navigation
field at cell X and spref

i be the preferred speed of
the agent ai, then the preferred velocity is given by:
vpref

i = spref
i N(X). In our implementation, we use

a bilinear interpolation scheme to interpolate between
the preferred direction vectors stored at the four closed
neighboring cells instead of just a single cell, resulting
in smoother paths to the goal for each agent.

This preferred velocity serves as an input to the local
collision avoidance mechanism to compute a collision-
free velocity for the agent. Our method can be easily
combined with existing local collision avoidance meth-
ods. We outline two popular methods commonly used
in multi-agent systems.

Social Force Model: The social forces model for pedes-
trian dynamics [6] is commonly used for collision avoid-
ance in multi-agent systems. In this scheme, collision
avoidance is achieved by means of forces acting on each
agent. There is a repulsive social force component Fsoc

that prevents the agent from colliding with other agents
and obstacles in the environment. In addition, there is
also an attractive force Fatt that guides the agent to
the goal. This attractive force depends on the preferred
velocity of the agent (given by the navigation field).

Let A denote the set of agents and O denote the set of
obstacles in the simulation. The net force F(ai) acting on
an agent ai at a given time-step is given by:

F(ai) = Fatt(ai) +
∑

aj∈A,j 6=i

Fsoc
j (ai) +

∑

o∈O
Fsoc

o (ai) (6)

where,

Fatt(ai) = mi
(spref

i N(X)− vi)
τ

(7)

Here, mi denotes the mass of the agent ai, vi is the
current velocity, vpref

i = spref
i N(X) is the preferred

velocity and τ is the reaction time. The social forces
acting on the agent Fsoc(ai) are computed as given in [6].
We refer the reader to the appendix and [6] for additional
details.

Reciprocal Velocity Obstacles: Berg et al. [8], [9] propose
a geometric framework for local collision avoidance.
It takes as input the preferred velocity of the agent
vpref

i and returns an optimal collision-free velocity that
minimizes the chosen penalty metric. The penalty of
a candidate velocity vcand

i depends on its deviation
from the preferred velocity vpref

i = spref
i N(X) and the

expected time to collision tc(vcand
i):

penalty(vcand
i) = wi

1
tc(vcand

i)
+ ||vpref

i − vcand
i || (8)

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

(a) (b)

Fig. 8: Navigation fields (a) A navigation field computed for the guidance field shown in Figure 3 (and indicated by the
arrow here) with the goal (black dot) placed such that the guidance field points away from it. (b) If there is no guidance field,
the navigation field gives the shortest paths to the goal (black dot). A shortest path is shown with a sharp turn at the obstacle
(light gray) corner.

for some user-defined weighting factor wi. The expected
time to collision tc(vcand

i) can easily be computed, given
the definition of the Reciprocal Velocity Obstacles. A
Monte-Carlo sampling over the set of admissible veloci-
ties is used to compute this velocity. We refer the reader
to the appendix and [8], [9] for details. We used the pub-
licly available RVO library [47] for all our experiments.

It is important to note that none of the collision avoidance
methods suggested in literature can absolutely guarantee
collision-free paths for all the agents in the simulation,
but we found that the two methods outlined above
perform well in practice, even in crowded scenarios and
complex environments.

7 RESULTS

In this section, we highlight the performance of our algo-
rithm on different scenarios. In our current implementa-
tion, we use a simple 2D user interface for interactively
specifying the guidance fields using a sketch-based inter-
face. The user also has the option of importing flow fields
(either extracted from video or designed procedurally) at
the start of the simulation. The simulation results were
recorded and visualized in real-time using the Horde3D
graphics engine [48].

We demonstrate some of the benefits of our approach in
different scenarios. The accompanying video illustrates
several situations in which our approach was success-
fully used to direct simulations.

Four Blocks: This scenario comprises of four groups of
25 agents each in each corner of the environment that
need to move to the opposite corner. In the middle, there
are four square-shaped static obstacles that form narrow
passages. Existing agent-based systems cause congestion
in the center. The user directs the simulation (either on
a individual group level as in Fig. 9 or on a global scale
as in Fig. 10) to resolve this congestion. Depending on
the user input, the user can get different crowd flows
through the blocks.

(a) (b) (c)

Fig. 9: Group level editing: (a) Individual guidance fields
for each of the four groups of agents; (b, c) Intermediate
positions of the agents using the computed navigation field.

Crossing: This simulation shows four streams of agents
meeting at a crossing. The user sketches alternative tra-
jectories to generate interesting behaviors at the crossing
and allowing for more streamlined flow (as illustrated in
the accompanying video).

Subway: Fig. 1 shows the simulation of a crowd of
435 agents entering/exiting a subway station. The initial
positions and goals of the agents are known. However,
opposing flows of agents at the turnstiles leads to con-
gestion and undesirable behavior. Local collision avoid-
ance methods are unable to resolve this congestion. We
successfully demonstrate how our interface can be used
to specify guidance fields (both global and individual
as in Fig. 1(b)) to direct agent flows and can generate
natural looking behavior.

Crosswalk: Fig. 4 shows pedestrians crossing at a regular
crosswalk. Lane-formation is an emergent behavior that
is commonly observed in such situations [22]. We use
the motion patterns extracted from a video (see Fig.
5) to replicate the motion and behavior of the agents
in our simulation. The flow fields extracted from the
video footage are static and typically noisy. In such cases,
one could also augment it with user-provided guidance
fields to get the desired behavior. Our approach is able
to direct the flow of agents and generate multiple lane
formation. The user can have precise control over the
lane formation for streamlined flow. The width of the
brush stroke can also be used to control the dispersion

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

(a) (b) (c)

Fig. 10: Global guidance fields: (a) A global guidance field
applied to all the agents; (b, c) Intermediate positions of the
agents in the simulation using the computed navigation field.

of agents in a group.

7.1 Performance

Table 1 summarizes the performance of our system on
four demo scenarios (as measured on a single Intel
Xeon 2.66GHz processor). The third column indicates
the average time to compute the navigation field (per
user edit) and the fourth column indicates the average
time taken per simulation frame. The results indicate that
the navigation fields can be computed in real-time, even
for complex environments such as the one shown in the
subway simulation scenario. The runtime complexity of
computing the navigation field is O(mnlogmn), where
m × n is the grid dimension (similar to Dijkstra’s algo-
rithm). This complexity is only dependent on the grid
resolution and is independent of factors such as the com-
plexity of arrangement of obstacles in the environment,
the number of agents participating in the simulation or
the crowd density.

The agent-based simulation methods used (Helbing [6]
and RVO [8], [9]) exhibit almost linear runtime behavior
in the number of agents, per simulation time-step. This
can be attributed to the fact that interaction with only
a fixed, constant number of nearby agents is considered
for computing the collision-free velocity for an agent at
each simulation time-step. We refer the reader to [6], [9]
for additional details.

Scene #Agents Grid Local Average Average
dimensions collision NF time sim. time

avoidance (msec) (msec/frame)
Four Blocks 100 100x100 RVO 5.0 2.0

Crossing 640 100x100 Helbing 5.0 1.1
Crosswalk 145 225x100 Helbing 13.0 0.4

Subway 435 200x200 RVO 22.0 5.5

TABLE 1: Performance of our approach on the four demo
scenarios. The results indicate our approach is capable of
computing navigation fields in real-time and incurs very
little overhead in terms of simulation time (measured in
milliseconds).

8 COMPARISON AND ANALYSIS

We compare some features of our approach with prior
literature and also highlight some limitations.

8.1 Comparison

Many prior works have addressed the problem of simu-
lating virtual crowds, either using vector fields or user-
driven control. We present a novel unifying framework
to seamlessly composite (anisotropic) guidance fields
from multiple sources to compute navigation fields for
each group of agents (or each agent). This allows for
more fine-grained control over the simulations in com-
parison to previous approaches which use a single global
vector field for directing crowd flow. Our method also
allows the user to edit the simulations at interactive
rates.

Reynolds [5] extended the flocking model for agents
from [4] to incorporate simple steering behaviors for
individual agents. One of the proposed features allows
the user to draw flow fields that can be used to steer
agents. This method is primarily designed for flocking
simulations and does not address the broader issue of
goal-directed navigation or singularities in all kind of
navigation fields.

Chenney [20] proposed an approach to design
divergence-free velocity fields on a planar domain
for simulating fluid-like phenomena and crowds. The
divergence-free property serves the primary purpose of
collision avoidance among agents, but is not applicable
to goal-directed navigation. The field is also constructed
on the basis of a limited number of template flow
tiles that are stitched together and the approach is
not interactive. Jin et al. [21] use a scattered RBF
interpolation scheme to compute a global vector
field over the the entire domain for guiding agents.
This alone is not sufficient in order to prevent any
occurrences of singularities in the navigation field. Our
approach guarantees that there are no singularities in
the navigation vector field (except for local minima at
the goal positions).

The continuum crowd formulation [22] solves the
Eikonal equation at every time-step of the simulation,
per group of agents. This can become expensive for a
simulation with a large number of groups. In contrast,
our approach only recomputes the navigation vector
field corresponding to a user-edit or when a new guid-
ance field is specified. Since our method uses a per-agent
collision avoidance scheme, our approach can be easily
combined with other agent-based methods, suited for
simulating heterogeneous crowds. Our method is also
capable of compositing both isotropic and anisotropic
costs as compared to the continuum crowd approach. Re-
cently, Paravisi et al. [49] extended this work by learning
the parameters involved from individual trajectories of
agents extracted from video footage. This approach has
been demonstrated on video footage of sparse scenes,
whereas our approach is not limited by the density of
agents in the scene.

Kwon et al. [33] presented an interactive editing scheme

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

for a user to edit group locomotion based on mesh
deformation. This approach is primarily designed for
generating high fidelity motions for offline simulations
of crowds, and has a different goal as compared to
our algorithm. Our approach can be considered to be
complementary to the work of Takahashi et al. [34]
on controlling macroscopic arrangements of agents in a
simulation. Other algorithms [30], [14] allow the user to
specify agent attributes, actions, emotion states and cer-
tain group behaviors but these methods do not address
the issue of navigation.

We extend the approach suggested by Ferguson et al.
[45] to incorporate anisotropic costs (using the frame-
work outlined in [46]) to compute cost-optimal agent
trajectories in the presence of user-specified guidance
fields. To the best of our knowledge, this is the first
attempt at robustly integrating user input (in the form of
user-drawn strokes, flow fields extracted from video or
procedurally defined guidance fields) with a multi-agent
system to provide a unifying framework to direct crowd
simulations. We provide rigorous guarantees in terms
of goal-directed navigation of agents. Our approach is
general and applicable to a variety of existing local
collision avoidance methods.

8.2 Limitations

Our approach has some limitations. We make some
assumptions about the underlying multi-agent simu-
lation system, such as global goal-directed navigation
and computation of preferred velocity for each agent.
Moreover, local collision avoidance is also performed by
the underlying algorithm and governs the behavior of
all agents. Currently, we use a simple 2D mouse-based
interface and it can be hard to select a particular agent or
a group of agents in a dense scenario and specify guiding
trajectories for such groups. We use a regular grid to
partition the free space and it can have high memory
cost and runtime overhead in the case of heterogeneous
crowds. Finally, it may not be possible to generate all
kinds of macroscopic behaviors, social interactions or
crowd motion patterns using our approach. There might
be situations where a combination of a simple agent-
based model and our method may still not result in
the desired behavior and more sophisticated behavior
models might be required.

9 CONCLUSION AND FUTURE WORK

We presented an intuitive approach to direct simulation
of virtual crowds using goal-directed navigation func-
tions. We have successfully demonstrated the approach
for a wide variety of simulation to generate differ-
ent macroscopic behaviors and natural looking motion
patterns, resolve congestion and perform goal-directed

navigation. Overall, this approach offers a simple, yet
powerful method to direct or control crowd simulations.

There are several possible avenues for future work in
this area. Higher-level behavioral specification in terms
of guidance fields is essential for authoring realistic
crowd simulations. Our current framework could be
augmented with behaviors such as following, queueing
or social interactions to allow for a more diverse range
of permitted behaviors. We would like to combine our
approach with other multi-agent simulation algorithms
that use cognitive modeling techniques. We may also
wish to include other information in the cost formulation
such as density of agents (e.g. continuum formulation).
Our method could be used in combination with a better
local collision avoidance schemes [28], [27], [50] and
character animation schemes [33], [2] to generate more
realistic behaviors. The flow fields extracted from crowd
footage are currently static but dynamic flow fields can
be incorporated into our approach as well and yield
potentially better results.

ACKNOWLEDGMENTS

This research was supported in part by ARO contracts
DAAD19-02-1-0390 and W911NF-04-1-0088, NSF awards
0400134, 0429583, and 0404088, DARPA/RDECOM con-
tract N61339-04-C-0043, Intel, Carolina Development,
and Disney. We thank Min Hu, Saad Ali and Prof.
Mubarak Shah ([29]) for making the video and motion
flow field data for the Hong Kong pedestrian crossing
available to us.

REFERENCES

[1] D. Thalmann, C. O’Sullivan, P. Ciechomski, and S. Dobbyn, Pop-
ulating Virtual Environments with Crowds. Eurographics Tutorial
Notes, 2006.

[2] N. Pelechano, J. M. Allbeck, and N. I. Badler, Virtual Crowds:
Methods, Simulation and Control. Morgan and Claypool Publishers,
2008.

[3] S. M. LaValle, Planning Algorithms. Cambridge University Press
(also available at http://msl.cs.uiuc.edu/planning/), 2006.

[4] C. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” ACM SIGGRAPH Computer Graphics, vol. 21, pp. 25–34,
1987.

[5] ——, “Steering behaviors for autonomous characters,” Game De-
velopers Conference, 1999.

[6] D. Helbing, I. Farkas, and T. Vicsek, “Simulating dynamical
features of escape panic,” cond-mat/0009448, Sep. 2000, nature
407, 487-490 (2000). [Online]. Available: http://arxiv.org/abs/
cond-mat/0009448

[7] A. Kirchner and A. Schadschneider, “Simulation of evacuation
processes using a bionics-inspired cellular automaton model for
pedestrian dynamics,” Physica A, vol. 312, no. 1-2, pp. 260–276,
September 2002.

[8] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity
obstacles for realtime multi-agent navigation,” Proc. of IEEE Con-
ference on Robotics and Automation, pp. 1928–1935, 2008.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

[9] J. van den Berg, S. Patil, J. Sewall, D. Manocha, and M. Lin, “Inter-
active navigation of multiple agents in crowded environments,”
in Proc. Symposium on Interactive 3D Graphics and Games, 2008, pp.
139–147.

[10] D. C. Brogan and J. K. Hodgins, “Group behaviors for systems
with significant dynamics,” Autonomous Robots, vol. 4, pp. 137–
153, 1997.

[11] S. R. Musse and D. Thalmann, “A model of human crowd be-
havior: Group inter-relationship and collision detection analysis,”
Computer Animation and Simulation, pp. 39–51, 1997.

[12] T. Sakuma, T. Mukai, and S. Kuriyama, “Psychological model
for animating crowded pedestrians: virtual humans and social
agents,” in Computer Animation Virtual Worlds, vol. 16, 2005, pp.
343–351.

[13] N. Pelechano, J. M. Allbeck, and N. I. Badler, “Controlling indi-
vidual agents in high-density crowd simulation,” Proc. of the 2007
ACM SIGGRAPH/Eurographics Symposium on Computer animation,
pp. 99–108, 2007.

[14] M. Sung, M. Gleicher, and S. Chenney, “Scalable behaviors for
crowd simulation,” Computer Graphics Forum, vol. 23, no. 3 (Sept),
pp. 519–528, 2004.

[15] W. Shao and D. Terzopoulos, “Autonomous pedestrians,” in Proc.
ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
2005, pp. 19–28.

[16] Q. Yu and D. Terzopoulos, “A decision network framework
for the behavioral animation of virtual humans,” in Proc. ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, 2007,
pp. 119–128.

[17] S. Paris, J. Pettre, and S. Donikian, “Pedestrian reactive navigation
for crowd simulation:a predictive approach,” in Computer Graphics
Forum : Eurographics, 2007, pp. 665–674.

[18] B. Yersin, J. Maim, P. Ciechomski, S. Schertenleib, and D. Thal-
mann, “Steering a virtual crowd based on a semantically aug-
mented navigation graph,” in VCROWDS 2005, 2005.

[19] J. Pettré, H. Grillon, and D. Thalmann, “Crowds of moving
objects: navigation planning and simulation,” in SIGGRAPH ’08:
ACM SIGGRAPH classes, 2008, pp. 1–7.

[20] S. Chenney, “Flow tiles,” in Proc. ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, 2004, pp. 233–242.

[21] X. Jin, J. Xu, C. C. L. Wang, S. Huang, and J. Zhang, “Interactive
control of large crowd navigation in virtual environment using
vector field,” in IEEE Computer Graphics and Application, vol. 28,
no. 6, 2008, pp. 37–46.

[22] A. Treuille, S. Cooper, and Z. Popovic, “Continuum crowds,” Proc.
of ACM SIGGRAPH, pp. 1160 – 1168, 2006.

[23] H. Lee, M. Choi, Q. Hong, and J. Lee, “Group behavior from
video: a data-driven approach to crowd simulation,” in Proc. ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, 2007,
pp. 109–118.

[24] A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by exam-
ple,” Computer Graphics Forum (Proceedings of Eurographics), vol. 26,
no. 3, pp. 655–664, 2007.

[25] S. R. Musse, C. R. Jung, J. C. S. Jacques, and A. Braun, “Using
computer vision to simulate the motion of virtual agents,” in
Computer Animation Virtual Worlds, 2007, pp. 83–93.

[26] N. Courty and T. Corpetti, “Crowd motion capture,” in Computer
Animation Virtual Worlds, vol. 18, 2007, pp. 361–370.

[27] J. Pettré, J. Ondrej, A. Olivier, A. Cretual, and S. Donikian,
“Experiment-based modeling, simulation and validation of in-
teractions between virtual walkers,” in Proc. of ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2009, pp.
189–198.

[28] A. Lerner, E. Fitusi, Y. Chrysanthou, and D. Cohen-Or, “Fit-
ting behaviors to pedestrian simulations,” in Proc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, 2009, pp.

199–208.

[29] M. Hu, S. Ali, and M. Shah, “Learning motion patterns in crowded
scenes using motion flow field,” in IEEE International Conference
on Pattern Recognition (ICPR), 2008, pp. 1–5.

[30] B. Ulicny, O. Ciechomski, and D. Thalmann, “Crowdbrush: In-
teractive authoring of real-time crowd scenes,” in Proc. ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, 2004,
pp. 243–252.

[31] R. A. Metoyer and J. Hodgins, “Reactive pedestrian path follow-
ing from examples,” in Proc. Computer Animation and Social Agents,
2003, pp. 149–156.

[32] M. Oshita and Y. Ogiwara, “Sketch-based interface for crowd
animation,” in Proc. of 10th Smart Graphics, 2009, pp. 253–262.

[33] T. Kwon, K. H. Lee, J. Lee, and S. Takahashi, “Group motion
editing,” in Proceedings of ACM SIGGRAPH, 2008, pp. 1–8.

[34] S. Takahashi, K. Yoshida, T. Kwon, K. H. Lee, J. Lee, and S. Y. Shin,
“Spectral-based group formation control,” in Computer Graphics
Forum : Eurographics, vol. 28, 2009, pp. 639–648.

[35] L. Prasso, J. Buhler, and J. Gibbs, “The PDI crowd system for
ANTZ,” in ACM SIGGRAPH ’98 Conference abstracts and applica-
tions, 1998, p. 313.

[36] MASSIVE, “http://www.massivesoftware.com,” 2006.

[37] J. J. van Wijk, “Image based flow visualization,” in SIGGRAPH
2002: Proceedings of the 29th annual conference on Computer graphics
and interactive techniques, 2002, pp. 745–754.

[38] E. Zhang, K. Mischaikow, and G. Turk, “Vector field design on
surfaces,” ACM Transactions on Graphics, vol. 25, no. 4, pp. 1294–
1326, 2006.

[39] M. Fisher, P. Schroder, M. Desbrun, and H. Hoppe, “Design of
tangent vector fields,” ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH), vol. 26, no. 3, 2007.

[40] J. Stam, “Flows on surfaces of arbitrary topology,” in ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH), 2003,
pp. 724–731.

[41] G. Still, “Crowd dynamics,” Ph.D. dissertation, University of
Warwick, UK, 2000.

[42] G. Arechavaleta, J.-P. Laumond, H. Hicheur, and A. Berthoz, “An
optimality principle governing human walking,” IEEE Trans. on
Robotics, vol. 24, no. 1, pp. 5–14, 2008.

[43] O. B. Bayazit, J. Lien, and N. M. Amato, “Roadmap-based flocking
for complex environments,” in Proc. Pacific Conference on Computer
Graphics and Applications, 2002, pp. 104–113.

[44] G. Chen, G. Esch, P. Wonka, P. Müller, and E. Zhang, “Interac-
tive procedural street modeling,” ACM Transactions on Graphics,
vol. 27, no. 3, pp. 1–10, 2008.

[45] D. Ferguson and A. Stentz, “Field D*: An interpolation-based
path planner and replanner,” Springer Tracts in Advanced Robotics,
vol. 28, pp. 239–253, 2007.

[46] J. Sethian and A. Vladimirsky, “Ordered upwind methods for
static hamilton-jacobi equations: theory and algorithms,” SIAM
Journal of Numerical Analysis, vol. 41, no. 1, pp. 325–363, 2003.

[47] RVOLibrary, “RVO Library: Reciprocal velocity
obstacles for real-time multi-agent simulation,
http://gamma.cs.unc.edu/RVO/Library/index.html,” 2008.

[48] Horde3D, “http://www.horde3d.org,” 2007.

[49] M. Paravisi, A. Werhli, J. J. Junior, R. Rodrigues, C. R. Jung, and
S. R. Musse, “Continuum crowds with local control,” in Computer
Graphics International, 2008, pp. 108–115.

[50] S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. Lin, D. Manocha,
and P. Dubey, “Clearpath: highly parallel collision avoidance for
multi-agent simulation,” in Proc. ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2009, pp. 177–187.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

APPENDIX

LOCAL COLLISION AVOIDANCE

9.1 Social Forces Model

The social forces model for pedestrian dynamics [6] is
commonly used for collision avoidance in multi-agent
systems. In this scheme, collision avoidance is achieved
by means of forces acting on each agent. There is a
repulsive social force component Fsoc that prevents the
agent from colliding with other agents and obstacles in
the environment. In addition, there is also an attractive
force Fatt that guides the agent to the goal. This attrac-
tive force is based on the preferred velocity of the agent
(which is provided by the navigation field).

Let A denote the set of agents and O denote the set of
obstacles in the simulation. The net force F(ai) acting on
an agent ai at a given time-step is given by:

F(ai) = Fatt(ai) +
∑

aj∈A,j 6=i

Fsoc
j (ai) +

∑

o∈O
Fsoc

o (ai) (9)

where,
Fatt(ai) = mi

(vpref
i − vi)

τ
(10)

Fsoc
j (ai) = αe

(ri+rj−||pi−pj ||)
β nij (11)

Fsoc
o (ai) = Ae

(ri−dio)
B nio (12)

Here, mi denotes the mass of the agent, ri is the radius,
pi is the current position, vi is the current velocity, vpref

i

is the preferred velocity (given by the navigation field),
τ is the reaction time, α is a social scaling constant, β is
the agent’s personal space drop-off constant, nij is the
normal direction between ai and aj , A is an obstacle
scaling constant, B is the obstacle distance drop-off
constant, and nio is the vector from ai to the nearest point
on obstacle o. For efficient computation of these forces,
we compute forces to agents and obstacles within a pre-
determined radius Ri. We use a numerical integration
scheme to compute the agent’s velocity after applying
the forces.

Based on these forces and reasoning about other agents,
additional agent behaviors can also be incorporated into
this framework. For example, aggressiveness or urgency
can be described by increased scaling constants for the
attractive forces towards the goal and repulsive forces.
Moreover, behavior such as following and queuing can
be simulated by adding attractive forces that are gener-
ated by the appropriate agents.

In order to resolve contacts with a colliding agent or
obstacle, additional forces are applied to each agent
in collision. A pushing force, Fpush, acts to force a
separation between agents and a frictional force, Ffric

simulates the act of slowing down due to a collision.
Unlike the associated repulsive force, these forces are
only applied when a collision occurs. For agent ai and

an intersecting agent aj , the following forces are added
to Equation 9:

Fpush
j (ai) = κ(ri + rj − ||pi − pj ||)nij (13)

Ffric
j (ai) = λ||Fpush

j (ai)||tij (14)

where κ is a pushing spring constant, λ is a sliding
friction constant, and tij is the tangent vector to nij .
Contacts with obstacles are resolved in a similar fashion.
We used the parameter values given in [6] for all our
experiments and we refer the reader to the paper for
additional details.

9.2 Reciprocal Velocity Obstacles

Berg et al. [8], [9] proposed a geometric framework for
multi-agent collision avoidance using Reciprocal Velocity
Obstacles. Each agent in the simulation, ai has position
pi, velocity vi, and geometric shape gi associated with
it. At each time-step of the simulation, the local collision
avoidance scheme based on the RVO algorithm takes
into account the position and velocity of agents in a
fixed neighborhood of ai to compute a new collision-free
velocity and direction of motion in the following manner.

For the sake of illustration, consider two agents, A and
B. Let pA and pB be their current positions and vA

and vB be the current velocities, respectively. Let λ(p,v)
define the ray shot from point p in the direction along
v (i.e. λ(p,v) = p + tv). Moreover, gA ⊕ gB denotes the
Minkowski sum of two geometric primitives gA and gB ,
i.e. gA ⊕ gB = {xA + xB |xA ∈ gA,xB ∈ gB}. Let −gA

denote the shape gA reflected in its reference point, i.e.
−gA = {−xA|xA ∈ gA}. The reciprocal velocity obstacle
RV OA

B that agent B induces on agent A is defined as
follows:

RV OA
B = {v′A|λ(pA, 2v′A−vA−vB)∩gB⊕−gA 6= ∅}. (15)

RV OA
B represents the set of all velocities of agentA that

would lead to a potential collision with agent B at some
point ahead in time. If agent A chooses a new velocity
outside RV OA

B and agent B chooses a new velocity
outside RV OB

A , the agents are guaranteed to have chosen
a collision-free and oscillation-free trajectory in this case
(see Figure 11).

In the context of multi-agent navigation, the RVO formu-
lation is applied as follows to each agent independently.
Among the set of admissible velocities for each agent,
the RVO algorithm selects the one with the minimum
penalty. The penalty of a candidate velocity vcand

i de-
pends on its deviation from the preferred velocity vpref

i

and the expected time to collision tc(vcand
i):

penalty(vcand
i) = wi

1
tc(vcand

i)
+ ||vpref

i − vcand
i || (16)

for some user-defined weighting factor wi, where wi

can vary among the agents to reflect differences in per-
sonal preferences such as aggressiveness and shyness.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

Fig. 11: The Reciprocal Velocity Obstacle
RV OA

B(vB ,vA) of agent B to agent A. It is used for
local collision avoidance. We compute this locally for each
agent during each simulation cycle.

The expected time to collision tc(vcand
i) can be easily

computed, given the definition of the Reciprocal Velocity
Obstacles (based on other agents and obstacles in the
environment).

Fig. 12: The combined reciprocal velocity obstacle for the
agent (dark) is the union of the individual reciprocal velocity
obstacles of the other agents.

Overall, given a set of agents A = {a1, a2, . . . an}, the
function RVO(ai,A − ai) returns the optimal collision-
free velocity for agent ai for the next simulation cycle,
as shown in figure 12. It should be noted that comput-
ing the union of all the Reciprocal Velocity Obstacles
{RV Oai

a1
, RV Oai

a2
. . . RV Oai

an
} is not feasible computation-

ally and we use a Monte-Carlo sampling scheme in
velocity space to compute the desired velocity.For details
on this function, we refer the readers to [8], [9]. We
used the publicly available RVO library [47] for all our
experiments.

Sachin Patil received his B.Tech degree in
Computer Science and Engineering from the
Indian Institute of Technology, Bombay, in 2006.
He is currently a Ph.D. candidate in the De-
partment of Computer Science at the University
of North Carolina at Chapel Hill. His research
interests include motion and path planning in
virtual environments, and medical robotics.

Jur van den Berg received his M.S. degree
from the University of Groningen, and his Ph.D.
degree from Utrecht Univerisity, The Nether-
lands, in 2003 and 2007, respectively. From
2007 to 2009 he was a postdoctoral researcher
at the University of North Carolina at Chapel
Hill. Currently he is a postdoctoral researcher
at the University of California at Berkeley. His
research interests include motion and path plan-
ning, navigation of virtual characters, and medi-
cal robotics.

Sean Curtis received a BA in German from
Brigham Young University, a BS in Computer
Science from the University of Utah, and is
currently a Ph.D. candidate in the Department
of Computer Science at the University of North
Carolina at Chapel Hill. His current research in-
terests include character animation, crowd sim-
ulation and collision detection. He also has over
10 years of experience working in all facets of
the digital animation and entertainment industry.

Ming C. Lin is currently the Beverly W. Long
Distinguished Professor of Computer Science at
the University of North Carolina at Chapel Hill.
Her research interests include physically-based
modeling, haptics, robotics, real-time 3D graph-
ics for virtual environments, geometric com-
puting, and distributed interactive simulation.
She has (co-)authored more than 190 refereed
scientific publications, co-edited/authored three
books, including ”Applied Computation Geom-
etry” by Springer-Verlag, ”High-Fidelity Haptic

Rendering” by Morgan-Claypool, and ”Haptic Rendering: Foundations,
Algorithms and Applications” by A.K. Peters.

She has received several honors and awards, including the NSF
Young Faculty Career Award in 1995, Honda Research Initiation Award
in 1997, UNC/IBM Junior Faculty Development Award in 1999, UNC Het-
tleman Award for Scholarly Achievements in 2002, Carolina Women’s
Center Faculty Scholar in 2008, Carolina’s WOWS Scholar 2009–2011,
and 6 best paper awards. She has served as a program committee
member for over 90 leading conferences on virtual reality, computer
graphics, robotics, haptics and computational geometry and co-chaired
over 20 international conferences and workshops. She is the Associate
Editor-in-Chief of IEEE Transactions on Visualization and Computer
Graphics (TVCG). She also has served as an associate editor and guest
editor of over 15 journals and magazines.

Dinesh Manocha is currently a Phi Delta
Theta/Mason Distinguished Professor of Com-
puter Science at the University of North Carolina
at Chapel Hill. He was selected an Alfred P.
Sloan Research Fellow, received NSF Career
Award in 1995 and Office of Naval Research
Young Investigator Award in 1996, Honda Re-
search Initiation Award in 1997, and Hettleman
Prize for scholarly achievement at UNC Chapel
Hill in 1998. He has received more than 13 best
paper awards at leading conferences.

His research interests include geometric computing, interactive com-
puter graphics, physics-based simulation and robotics. He has published
more than 270 papers in these areas. Some of the software sys-
tems developed by his group on collision and geometric computations,
interactive rendering, and GPU-based algorithms have been widely
downloaded and used by leading commercial vendors. He has served
as a program committee member or program chair for more than 75
leading conferences and also served as a guest editor or member of
editorial board of ten leading journals. He has supervised 40 MS and
Ph.D. students and has served as a PI or Co-PI on more than 55 grants.
His research has been sponsored by AMD/ATI, ARO, DARPA, Disney,
DOE, Honda, Intel, Microsoft, NSF, NVIDIA, ONR, RDECOM and Sloan
Foundation.

